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Foreword

We livein aworld today in which software plays a critical part. The most critical soft wareis not running on
large systems and PCs. Rather, it runsinside the infrastructure and in the devices that we use every day. Our
transportation, communications, and energy systems won't work if the embedded software contained in our cars,
phones, routers and power plants crashes.

The design of thisinvisible, embedded software is crucia to all of us. Y et, there has been areal shortage of
good information as to effective design and implementation practices specific to this very different world. Make
no mistake, it isindeed different and often more difficult to design embedded software than more traditional
programs. Time, and the interaction of multiple tasksin rea-time, must be managed. Seemingly esoteric
concepts, such as priority inversion, can become concrete in a hurry when they bring a device to its knees.
Efficiency-asmall memory footprint and the ability to run on lower cost hardware-become key design
considerations because they directly affect cost, power usage, size, and battery life. Of course, reliability is
paramount when so much is at stake-company and product reputations, critical infrastructure functions, and,
some times, even lives.

Mr. Li has done amarvelous job of pulling together the relevant information. He lays out the issues, the
decision and design process, and the available tools and methods. The latter part of the book provides valuable
insights and practical experiences in understanding application devel opment, common design problems, and
solutions. The book will be helpful to anyone embarking on an embedded design project, but will be of par
ticular help to engineers who are experienced in software devel opment but not yet in real-time and embedded
software development. It isaso awonderful text or reference volume for academic use.

The quality of the pervasive, invisible software surrounding us will determine much about the world being
created today. This book will have a positive effect on that quality and is awelcome addition to the engineering
bookshelf.

Jerry Fiddler
Chairman and Co-Founder, Wind River




Preface

Embedded systems are omnipresent and play significant rolesin modern-day life. Embed ded systems are also
diverse and can be found in consumer electronics, such as digital cameras, DVD players and printers; in
industria robots; in advanced avionics, such as missile guidance systems and flight control systems; in medical
equipment, such as cardiac arrhythmia monitors and cardiac pacemakers; in automotive designs, such as fuel
injection systems and auto-braking systems. Embedded systems have significantly improved the way we live
today-and will continue to change the way we live tomorrow.

Programming embedded systemsis a special discipline, and demands that embedded sys tems devel opers have
working knowledge of a multitude of technology areas. These areas range from low-level hardware devices,
compiler technology, and debugging tech niques, to the inner workings of real-time operating systems and
multithreaded application design. These requirements can be overwhelming to programmers new to the
embedded world. The learning process can be long and stressful. As such, | felt com pelled to share my
knowledge and experiences through practical discussions and illustrations in jumpstarting your embedded
systems projects.

Some books use a more traditional approach, focusing solely on programming low-level drivers and software
that control the underlying hardware devices. Other books provide a high-level abstract approach using
object-oriented methodol ogies and modeling lan guages. This book, however, concentrates on bridging the gap
between the higher-level abstract modeling concepts and the lower-level fundamental programming aspects of
embedded systems development. The discussions carried throughout this book are based on years of experience
gained from design and implementation of commercial embedded systems, lessons learnt from previous
mistakes, wisdom passed down from others, and results obtained from academic research. These elementsjoin
together to form useful insights, guidelines, and recommendations that you can actually use in your rea-time
embedded systems projects.

This book provides a solid understanding of real-time embedded systems with detailed practical examples and
industry knowledge on key concepts, design issues, and solu tions. This book supplies arich set of ready-to-use
embedded design building blocks that can accelerate your development efforts and increase your productivity.

| hope that Real-Time Concepts for Embedded Systems will become a key reference for you as you embark
upon your development endeavors.

If you would like to sign up for e-mail news updates, please send a blank e-mail to:
rtconcepts@news.cmpbooks.com. If you have a suggestion, correction, or addition to make to the book, e-mail

me at gingli @speakeasy.net

Audiencefor this Book

This book is oriented primarily toward junior to intermediate software developers work ing in the realm of
embedded computing.

If you are an experienced developer but new to real-time embedded systems develop ment, you will also find
the approach to design in this book quite useful. If you are a technical manager who is active in software
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design reviews of real-time systems, you can refer to this book to become better informed regarding the design
and implementation phases. This book can aso be used as complementary reference material if you are an
engineering or computer science student.

Before using this book, you should be proficient in at least one programming language and should have some
exposure to the software-devel opment process.




Acknowledgments

We would like to thank the team at CM P Books and especially Paul Temme, Michelle O'Neal, Marc Briand,
Brandy Ernzen, and Robert Ward.

We wish to express our thanks to the reviewers Jerry Krasner, Shin Miyakawa, Jun-ichiro itojun Hagino, and
Liliana Britvic for their contributions.

We would like to thank Nauman Arshad for hisinitial participation on this project.

Wewould also like to thank Anne-Marie Eileraas, Salvatore LiRosi, Loren Shade, and numerous other
individuals at Wind River for their support.

Finally, thanks go to our individual familiesfor their love and support, Huaying and Jane Lee, Maya and
William Y ao.




Chapter 1. Introduction

Overview

In ways virtually unimaginable just afew decades ago, embedded systems are reshaping the way peoplelive,
work, and play. Embedded systems come in an endless variety of types, each exhibiting unique characteristics.
For example, most vehicles driven today embed intelligent computer chips that perform value-added tasks,
which make the vehicles easier, cleaner, and more fun to drive. Telephone systems rely on multiple integrated
hardware and software systems to connect people around the world. Even private homes are being filled with
intelligent appliances and integrated systems built around embedded systems, which facilitate and enhance
everyday life.

Often referred to as pervasive or ubiquitous computers, embedded systems represent a class of dedicated
computer systems designed for specific purposes. Many of these embedded systems are reliable and
predictable. The devices that embed them are convenient, user-friendly, and dependable.

One speciad class of embedded systemsis distinguished from the rest by its requirement to respond to externa
eventsin real time. This category is classified as the real-time embedded system.

As an introduction to embedded systems and real-time embedded systems, this chapter focuses on:
examples of embedded systems,
defining embedded systems,

defining embedded systems with real-time behavior, and

current trends in embedded systems.




1.1 Real Life Examples of Embedded Systems

Even though often nearly invisible, embedded systems are ubiquitous. Embedded systems are present in many
industries, including industrial automation, defense, transportation, and aerospace. For example, NASA s Mars
Path Finder, Lockheed Martin s missile guidance system, and the Ford automobile all contain numerous
embedded systems.

Every day, people throughout the world use embedded systems without even knowing it. In fact, the embedded
system sinvigibility isits very beauty: users reap the advantages without having to understand the intricacies of
the technology.

Remarkably adaptable and versatile, embedded systems can be found at home, at work, and even in recreational
devices. Indeed, it is difficult to find a segment of daily life that does not involve embedded systemsin some
way. Some of the more visible examples of embedded systems are provided in the next sections.

1.1.1 Embedded Systemsin the Home Environment

Hidden conveniently within numerous household appliances, embedded systems are found all over the house.
Consumers enjoy the effort-saving advanced features and benefits provided by these embedded technologies.

Asshown in Figure 1.1 embedded systems in the home assume many forms, including security systems, cable
and satellite boxes for televisions, home theater systems, and tel egphone answering machines. As advancesin
microprocessors continue to improve the functionality of ordinary products, embedded systems are helping
drive the development of additional home-based innovations.
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Figure 1.1: Embedded systems at home.

1.1.2 Embedded Systemsin the Work Environment

Embedded systems have also changed the way people conduct business. Perhaps the most significant exampleis
the Internet, which isreally just avery large collection of embedded systemsthat are interconnected using
various networking technologies. Figure 1.2 illustrates what a small segment of the Internet might look like.



Figure 1.2: Embedded systems at work.

From various individual network end-points (for example, printers, cable modems, and enterprise network
routers) to the backbone gigabit switches, embedded technology has helped make use of the Internet necessary
to any business model. The network routers and the backbone gigabit switches are examples of real-time
embedded systems. Advancements in real-time embedded technology are making Internet connectivity both
reliable and responsive, despite the enormous amount of voice and data traffic carried over the network.

1.1.3 Embedded Systemsin Leisure Activities

At home, at work, even at play, embedded systems are flourishing. A child stoy unexpectedly springsto life
with unabashed liveliness. Automobiles equipped with in-car navigation systems transport people to
destinations safely and efficiently. Listening to favorite tunes with anytime-anywhere freedom is readily
achievable, thanks to embedded systems buried deep within sophisticated portable music players, as shownin
Figure 1.3.
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Figure 1.3: Navigation system and portable music player.

Even the portable computing device, caled a web tablet, shown in Figure 1.4, is an embedded system.

Figure 1.4: A web tablet.

Embedded systems also have teamed with other technologies to deliver benefits to the traditionally low-tech
world. GPS technology, for example, uses satellites to pinpoint locations to centimeter-level accuracy, which
allows hikers, cyclists, and other outdoor enthusiasts to use GPS handheld devices to enjoy vast spaces without
getting lost. Even fishermen use GPS devices to store the locations of their favorite fishing holes.



Embedded systems also have taken traditional radio-controlled airplanes, racecars, and boats to new heights
and speeds. As complex embedded systems in disguise, these devices take command inputs from joysticks and
pass them wirelessly to the device sreceiver, enabling the model airplane, racecar, or boat to engage in speedy
and complex maneuvers. In fact, the introduction of embedded technology has rendered these sports safer and
more enjoyable for model owners by virtually eliminating the once-common threat of crashing due to signal
interference.

1.1.4 Defining the Embedded System

Some texts define embedded systems as computing systems or devices without a keyboard, display, or mouse.
Thesetexts use the look characteristic asthe differentiating factor by saying, embedded systems do not look
like ordinary personal computers; they look like digital cameras or smart toasters. These statements are all
mideading.

A general definition of embedded systems is: embedded systems are computing systems with tightly coupled
hardware and software integration, that are designed to perform a dedicated function. The word embedded
reflects the fact that these systems are usually an integral part of alarger system, known as the embedding
system. Multiple embedded systems can coexist in an embedding system.

This definition is good but subjective. In the mgjority of cases, embedded systems are truly embedded, i.e., they
are systemswithin systems. They either cannot or do not function on their own. Take, for example, the digital
set-top box (DST) found in many home entertainment systems nowadays. The digital audio/video decoding
system, called the A/V decoder, which isan integral part of the DST, is an embedded system. The A/V decoder
accepts a single multimedia stream and produces sound and video frames as output. The signals received from
the satellite by the DST contain multiple streams or channels. Therefore, the A/V decoder worksin conjunction
with the transport stream decoder, which is yet another embedded system. The transport stream decoder
de-multiplexes the incoming multimedia streams into separate channels and feeds only the selected channel to
the A/V decoder.

In some cases, embedded systems can function as standalone systems. The network router illustrated in Figure
1.2 isastandalone embedded system. It is built using a specialized communication processor, memory, a
number of network access interfaces (known as network ports), and special software that implements packet
routing agorithms. In other words, the network router is a standalone embedded system that routes packets
coming from one port to another, based on a programmed routing agorithm.

The definition also does not necessarily provide answers to some often-asked questions. For example: Can a
persona computer be classified as an embedded system? Why? Can an Apple iBook that is used only asaDVD
player be called an embedded system?

A single comprehensive definition does not exist. Therefore, we need to focus on the char-acteristics of
embedded systems from many different perspectivesto gain areal under-standing of what embedded systems
are and what makes embedded systems special.

1.1.5 Embedded Processor and Application Awar eness

The processors found in common personal computers (PC) are general-purpose or universal processors. They
are complex in design because these processors provide afull scale of features and a wide spectrum of
functionalities. They are designed to be suitable for avariety of applications. The systems using these universal
processors are programmed with a multitude of applications. For example, modern processors have a built-in
memory management unit (MMU) to provide memory protection and virtual memory for multitasking-capable,
general-purpose operating systems. These universal processors have advanced cache logic. Many of these
processors have a built-in math co-processor capable of performing fast floating-point operations. These



processors provide interfaces to support a variety of external peripheral devices. These processors result in
large power consumption, heat production, and size. The complexity means these processors are also expensive
to fabricate. In the early days, embedded systems were commonly built using general-purpose processors.

Because of the quantum leap in advancements made in microprocessor technology in recent years, embedded
systems are increasingly being built using embedded processors instead of general-purpose processors. These
embedded processors are special-purpose processors designed for a specific class of applications. The key is
application awareness, i.e., knowing the nature of the applications and meeting the requirement for those
applicationsthat it is designed to run.

One class of embedded processors focuses on size, power consumption, and price. Therefore, some embedded
processors are limited in functionality, i.e., a processor is good enough for the class of applications for which it
was designed but is likely inadequate for other classes of applications. This is one reason why many embedded
processors do not have fast CPU speeds. For example, the processor chosen for a personal digital assistant
(PDA) device does not have a floating-point co-processor because floating-point operations are either not
needed or software emulation is sufficient. The processor might have a 16-bit addressing architecture instead of
32-hit, dueto its limited memory storage capacity. It might have a200MHz CPU speed because the majority of
the applications are interactive and display-intensive, rather than computation-intensive. This class of
embedded processors is small because the overall PDA deviceis dim and fitsin the paim of your hand. The
limited functionality means reduced power consumption and long-lasting battery life. The smaller size reduces
the overall cost of processor fabrication.

On the other hand, another class of embedded processors focuses on performance. These embedded processors
are powerful and packed with advanced chip-design technologies, such as advanced pipeline and paralel
processing architecture. These processors are designed to satisfy those applications with intensive computing
requirements not achievable with general-purpose processors. An emerging class of highly specialized and
high-performance embedded processors includes network processors devel oped for the network equipment and
telecommunications industry. Overall, system and application speeds are the main concerns.

Y et another class of embedded processors focuses on al four requirements performance, size, power
consumption, and price. Take, for example, the embedded digital signal processor (DSP) used in cell phones.
Real-time voice communication involves digital signal processing and cannot tolerate delays. A DSP has
specialized arithmetic units, optimized design in the memory, and addressing and bus architectures with
multiprocessing capability that allow the DSP to perform complex calculations extremely fast in real time. A
DSP outperforms a general -purpose processor running at the same clock speed many times over comesto
digital signal processing. These reasons are why DSPs, instead of general-purpose processors, are chosen for
cell phone designs. Even though DSPs are incredibly fast and powerful embedded processors, they are
reasonably priced, which keeps the overall prices of cell phones competitive. The battery from which the DSP
draws power lasts for hours and hours. A cell phone under $100 fitsin half the palm-size of an average person
at the time this book was written.

System-on-a-chip (SoC) processors are especially attractive for embedded systems. The SoC processor is
comprised of a CPU core with built-in peripheral modules, such as a programmabl e general-purpose timer,
programmable interrupt controller, DMA controller, and possibly Ethernet interfaces. Such a self-contained
design allows these embedded processors to be used to build a variety of embedded applications without
needing additional external peripheral devices, again reducing the overall cost and size of the final product.

Sometimes a gray area exists when using processor type to differentiate between embedded and non-embedded
systems. It isworth noting that, in large-scale, high-performance embedded systems, the choice between
embedded processors and universal microprocessorsis adifficult one.

In high-end embedded systems, system performance in a predefined context outweighs power consumption and
cost. The choice of a high-end, general purpose processor is as good as the choice of a high-end, specialized
embedded processor in some designs. Therefore, using processor type aone to classify embedded systems may



result in wrong classifications.

1.1.6 Hardwar e and Softwar e Co-Design M odd

Commonly both the hardware and the software for an embedded system are developed in parallel. Constant
design feedback between the two design teams should occur in this devel opment model. The result isthat each
side can take advantage of what the other can do. The software component can take advantage of special
hardware features to gain performance. The hardware component can ssmplify module design if functionality
can be achieved in software that reduces overall hardware complexity and cost. Often design flaws, in both the
hardware and software, are uncovered during this close collaboration.

The hardware and software co-design model reemphasizes the fundamental characteristic of embedded systems
they are application-specific. An embedded system is usually built on custom hardware and software.
Therefore, using this devel opment model is both permissible and beneficial.

1.1.7 Cross-Platform Development

Another typical characteristic of embedded systemsis its method of software development, called
cross-platform devel opment, for both system and application software. Software for an embedded system is
developed on one platform but runs on another. In this context, the platform is the combination of hardware
(such as particular type of processor), operating system, and software development tools used for further
development.

The host system is the system on which the embedded software is developed. The target system isthe
embedded system under devel opment.

The main software tool that makes cross-platform devel opment possible is a cross compiler. A cross compiler
isacompiler that runs on one type of processor architecture but produces object code for a different type of
processor architecture. A cross compiler is used because the target system cannot host its own compiler. For
example, the DIAB compiler from Wind River Systemsis such a cross compiler. The DIAB compiler runson
the Microsoft Windows operating system (OS) on the 1A-32 architecture and runs on various UNIX operating
systems, such as the Solaris OS on the SPARC architecture. The compiler can produce object code for
numMerous processor types, such as Motorola s 68000, MIPS, and ARM. We discuss more cross-development

toolsin Chapter 2.
1.1.8 Softwar e Storage and Upgradeability

Code for embedded systems (such as the real-time embedded operating system, the system software, and the
application software) is commonly stored in ROM and NVRAM memory devices. In Chapter 3, we discuss the
embedded system booting process and the steps involved in extracting code from these storage devices.
Upgrading an embedded system can mean building new PROM, deploying specia equipment and/or a special
method to reprogram the EPROM, or reprogramming the flash memory.

The choice of software storage device has an impact on development. The process to reprogram an EPROM
when small changes are made in the software can be tedious and time-consuming, and this occurrenceis
common during development. Removing an EPROM device from its socket can damage the EPROM; worse yet,
the system itself can be damaged if careful handling is not exercised.



The choice of the storage device can aso have an impact on the overall cost of maintenance. Although PROM
and EPROM devices are inexpensive, the cost can add up if alarge volume of shipped systemsisin thefield.
Upgrading an embedded system in these cases means shipping replacement PROM and EPROM chips. The
embedded system can be upgraded without the need for chip replacement and can be upgraded dynamically
over anetwork if flash memory or EEPROM is used as the code storage device (see the following sidebar).

Armed with the information presented in the previous sections, we can now attempt to answer the questions
raised earlier. A personal computer is not an embedded system because it is built using a general -purpose
processor and is built independently from the software that runs on it. The software applications devel oped for
persona computers, which run operating systems such as FreeBSD or Windows, are developed natively (as
opposed to cross-developed) on those operating systems. For the same reasons, an Apple iBook used only asa
DVD player is used like an embedded system but is not an embedded system.

Read Only Memory (ROM)

With non-volatile content and without the need for an external power source.

Mask Programmed ROM the memory content is programmed during the manufacturing process. Once
programmed, the content cannot be changed. It cannot be reprogrammed.

Field Programmable ROM (PROM ) the memory content can be custom-programmed onetime. The
memory content cannot change once programmed.

Erasable Programmable ROM (EPROM ) an EPROM device can be custom-programmed, erased, and
reprogrammed as often as required within its lifetime (hundreds or even thousands of times). The memory
content is non-volatile once programmed. Traditional EPROM devices are erased by exposure to
ultraviolet (UV) light. An EPROM device must be removed from its housing unit first. It isthen
reprogrammed using a special hardware device called an EPROM programmer.

Electrically Erasable Programmable ROM (EEPROM or E2PROM) modern EPROM devices are
erased electrically and are thus called EEPROM. One important difference between an EPROM and an
EEPROM deviceisthat with the EEPROM device, memory content of a single byte can be selectively
erased and reprogrammed. Therefore, with an EEPROM device, incremental changes can be made.
Another difference isthe EEPROM can be reprogrammed without a special programmer and can stay in
the device while being reprogrammed. The versatility of byte-level programmability of the EEPROM
comes at a price, however, as programming an EEPROM device is a slow process.

Flash Memory the flash memory is avariation of EEPROM, which allows for block-level (e.g.,
512-byte) programmability that is much faster than EEPROM.

Random AccessMemory (RAM)

Also called Read/Write Memory, requires external power to maintain memory content. The term random access
refersto the ability to access any memory cell directly. RAM is much faster than ROM. Two types of RAM that



are of interest;

Dynamic RAM (DRAM) DRAM isaRAM device that requires periodic refreshing to retain its content.

StaticRAM (SRAM) SRAM isaRAM device that retains its content as long as power is supplied by an
external power source. SRAM does not require periodic refreshing and it is faster than DRAM.

Non-Volatiie RAM (NVRAM) NVRAM isaspecia type of SRAM that has backup battery power so it
can retain its content after the main system power is shut off. Another variation of NVARM combines
SRAM and EEPROM so that its content is written into the EEPROM when power is shut off and isread
back from the EEPROM when power is restored.




1.2 Real-Time Embedded Systems

In the smplest form, real-time systems can be defined as those systems that respond to external eventsin a
timely fashion, as shown in Figure 1.5. The response time is guaranteed. We revisit this definition after
presenting some exampl €s of real-time systems.
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Figure 1.5: A simple view of real-time systems.

External events can have synchronous or asynchronous characteristics. Responding to external eventsincludes
recognizing when an event occurs, performing the required processing as aresult of the event, and outputting the
necessary results within a given time constraint. Timing constraints include finish time, or both start time and
finish time.

A good way to understand the relationship between real -time systems and embedded systemsisto view them as
two intersecting circles, as shown in Figure 1.6. It can be seen that not all embedded systems exhibit real-time
behaviors nor are all real-time systems embedded. However, the two systems are not mutually exclusive, and
the areain which they overlap creates the combination of systems known as real-time embedded systems.
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sections, we can now focus our attention on real-time systems. v

Figure 1.7: Structure of real-time systems.

1.2.1 Real-Time Systems

The environment of the real-time system creates the externa events. These events are received by one or more
components of the real-time system. The response of the real-time system is then injected into its environment
through one or more of its components. Decomposition of the real-time system, as shown in Figure 1.5, leads to
the general structure of real-time systems.



The structure of areal-time system, as shown in Figure 1.7, is a controlling system and at |east one controlled
system. The controlling system interacts with the controlled system in various ways. First, the interaction can be
periodic, in which communication is initiated from the controlling system to the controlled system. In this case,
the communication is predictable and occurs at predefined intervals. Second, the interaction can be aperiodic,
in which communication isinitiated from the controlled system to the controlling system. In this case, the
communication is unpredictable and is determined by the random occurrences of external eventsin the
environment of the controlled system. Finally, the communication can be a combination of both types. The
controlling system must process and respond to the events and information generated by the controlled systemin
aguaranteed time frame.

Imagine areal-time weapons defense system whose role isto protect a naval destroyer by shooting down
incoming missiles. Theideaisto shred an incoming missile into pieces with bullets before it reaches the ship.
The weapons system is comprised of aradar system, a command-and-decision (C& D) system, and weapons
firing control system. The controlling system isthe C&D system, whereas the controlled systems are the radar
system and the weapons firing control system.

The radar system scans and searches for potential targets. Coordinates of a potential target are sent to the
C&D system periodically with high frequency after the target is acquired.

The C&D system must first determine the threat level by threat classification and evaluation, based on the
target information provided by the radar system. If athreat isimminent, the C&D system mugt, a a
minimum, calculate the speed and flight path or tragjectory, aswell as estimate the impact location.
Because amissile tendsto drift off itsflight path with the degree of drift dependent on the precision of its
guidance system, the C&D system calculates an area (a box) around the flight path.

The C&D system then activates the weapons firing control system closest to the anticipated impact
location and guides the weapons system to fire continuously within the moving area or box until the target
is destroyed. The weapons firing control system is comprised of large-caliber, multi-barrel, high-muzzle
velocity, high-power machine guns.

In this weapons defense system example, the communication between the radar system and the C&D systemis
aperiodic, because the occurrence of a potential target is unpredictable and the potential target can appear at
any time. The communication between the C&D system and the weapons firing control system is, however,
periodic because the C&D system feeds the firing coordinates into the weapons control system periodically
(with an extremely high frequency). Initial firing coordinates are based on a pre-computed flight path but are
updated in real-time according to the actual location of the incoming missile.

Consider another example of areal-time system-the cruise missile guidance system. A cruise missileflies at
subsonic speed. It can travel at about 10 meters above water, 30 meters above flat ground, and 100 meters
above mountain terrains. A modern cruise missile can hit atarget within a 50-meter range. All these
capabilities are due to the high-precision, real-time guidance system built into the nose of acruise missile. Ina
simplified view, the guidance system is comprised of the radar system (both forward-looking and look-down
radars), the navigation system, and the divert-and-altitude-control system. The navigation system contains
digital maps covering the missile flight path. The forward-looking radar scans and maps out the approaching
terrains. Thisinformation isfed to the navigation system in real time. The navigation system must then
recalculate flight coordinates to avoid terrain obstacles. The new coordinates are immediately fed to the
divert-and-atitude-control system to adjust the flight path. The look-down radar periodically scans the ground
terrain along its flight path. The scanned data is compared with the estimated section of the pre-recorded maps.
Corrective adjustments are made to the flight coordinates and sent to the divert-and-altitude-control system if
data comparison indicates that the missile has drifted off the intended flight path.

In this example, the controlling system is the navigation system. The controlled systems are the radar system and
the divert-and-altitude-control system. We can observe both periodic and aperiodic communicationsin this



example. The communication between the radars and the navigation system is aperiodic. The communication
between the navigation system and the diver-and-altitude-control systemis periodic.

Let us consider one more example of area-time system-aDVD player. The DVD player must decode both the
video and the audio streams from the disc simultaneously. While amovie is being played, the viewer can
activate the on-screen display using a remote control. On-screen display is a user menu that allows the user to
change parameters, such as the audio output format and language options. The DVD player isthe controlling
system, and the remote control is the controlled system. In this case, the remote control is viewed as a sensor
because it feeds events, such as pause and language selection, into the DVD player.

1.2.2 Characteristics of Real-Time Systems

The C&D system in the weapons defense system must cal culate the anticipated flight path of the incoming
missile quickly and guide the firing system to shoot the missile down before it reaches the destroyer. Assume
T1isthetime the missile takes to reach the ship and is afunction of the missil€'s distance and velocity. Assume
T2 isthetimethe C&D system takes to activate the weapons firing control system and includes transmitting the
firing coordinates plus the firing delay. The difference between T1 and T2 is how long the computation may
take. The missile would reach its intended target if the C& D system took too long in computing the flight path.
The missilewould still reach itstarget if the computation produced by the C& D system was inaccurate. The
navigation system in the cruise missile must respond to the changing terrain fast enough so that it can re-compute
coordinates and guide the atitude control system to anew flight path. The missile might collide with amountain
if the navigation system cannot compute new flight coordinates fast enough, or if the new coordinates do not
steer the missile out of the collision course.

Therefore, we can extract two essential characteristics of real-time systems from the examples given earlier.

These characteristics are that real-time systems must produce correct computational results, called logical or
functional correctness, and that these computations must conclude within a predefined period, called timing
correctness.

Real-time systems are defined as those systems in which the overall correctness of the system depends on both
the functional correctness and the timing correctness. The timing cor-rectnessis at |least as important as the
functional correctness.

It isimportant to note that we said the timing correctnessis at least as important as the functional correctness. In
some real-time systems, functional correctness is sometimes sacrificed for timing correctness. We address this
point shortly after we introduce the classifications of real-time systems.

Similar to embedded systems, real-time systems also have substantial knowledge of the environment of the
controlled system and the applications running on it. This reason is one why many real-time systems are said to
be deterministic, because in those real-time systems, the response time to a detected event is bounded. The
action (or actions) taken in response to an event isknown apriori. A deterministic real-time system implies that
each component of the system must have a deterministic behavior that contributes to the overall determinism of
the system. As can be seen, a deterministic real-time system can be less adaptable to the changing environment.
The lack of adaptability can result in alessrobust system. The levels of determinism and of robustness must be
balanced. The method of balancing between the two is system- and application-specific. This discussion,
however, is beyond the scope of this book. Consult the reference material for additional coverage on thistopic.

1.2.3 Hard and Soft Real-Time Systems

In the previous section, we said computation must complete before reaching a given deadline. In other words,
real-time systems have timing constraints and are deadline-driven. Real-time systems can be classified,
therefore, as either hard real-time systems or soft real-time systems.

What differentiates hard real-time systems and soft real-time systems are the degree of tolerance of missed



deadlines, usefulness of computed results after missed deadlines, and severity of the penalty incurred for failing
to meet deadlines.

For hard real-time systems, the level of tolerance for amissed deadline is extremely small or zero tolerance.
The computed results after the missed deadline are likely useless for many of these systems. The penalty
incurred for amissed deadline is catastrophe. For soft real-time systems, however, the level of toleranceis
non-zero. The computed results after the missed deadline have arate of depreciation. The usefulness of the
results does not reach zero immediately passing the deadline, asin the case of many hard real-time systems. The
physical impact of a missed deadline is non-catastrophic.

A hard real-time system is a real-time system that must meet its deadlines with a near-zero degree of
flexibility. The deadlines must be met, or catastrophes occur. The cost of such catastrophe is extremely high and
can involve human lives. The computation results obtained after the deadline have either a zero-level of
usefulness or have a high rate of depreciation as time moves further from the missed deadline before the system
produces a response.

A soft real-time system is areal-time system that must meet its deadlines but with a degree of flexibility. The
deadlines can contain varying levels of tolerance, average timing deadlines, and even statistical distribution of
response times with different degrees of acceptability. In a soft real-time system, a missed deadline does not
result in system failure, but costs can rise in proportion to the delay, depending on the application.

Penalty is an important aspect of hard real-time systems for several reasons.

What is meant by 'must meet the deadline?

It means something catastrophic occursif the deadline is not met. It isthe penalty that sets the requirement.

Missing the deadline means a system failure, and no recovery is possible other than areset, so the
deadline must be met. Isthis a hard real-time system?

That depends. If a system failure means the system must be reset but no cost is associated with the failure,
the deadline is not a hard deadline, and the system is not a hard real-time system. On the other hand, if a
cost is associated, either in human lives or financial penalty such as a $50 million lawsuit, the deadline is
ahard deadline, and it isa hard real-time system. It is the penalty that makes this determination.

What defines the deadline for a hard real-time system?

It isthe penalty. For a hard real-time system, the deadline is a deterministic value, and, for a soft
real-time system, the value can be estimation.

One thing worth noting isthat the length of the deadline does not make areal-time system hard or soft, but it is
the requirement for meeting it within that time.

The weapons defense and the missile guidance systems are hard real-time systems. Using the missile guidance
system for an example, if the navigation system cannot compute the new coordinates in response to approaching



mountain terrain before or at the deadline, not enough distance is left for the missile to change altitude. This
system has zero tolerance for a missed deadline. The new coordinates obtained after the deadline are no longer
useful because at subsonic speed the distance is too short for the atitude control system to navigate the missile
into the new flight path in time. The penalty is a catastrophic event in which the missile collides with the
mountain. Similarly, the weapons defense system is also a zero-tolerance system. The missed deadline results
in the missile sinking the destroyer, and human lives potentially being lost. Again, the penalty incurred is
catastrophic.

On the other hand, the DVD player is a soft real-time system. The DVD player decodes the video and the audio
streams while responding to user commandsin real time. The user might send a series of commands to the DVD
player rapidly causing the decoder to missits deadline or deadlines. The result or penalty is momentary but
visible video distortion or audible audio distortion. The DVD player has ahigh level of tolerance because it
continues to function. The decoded data obtained after the deadlineis still useful.

Timing correctnessis critical to most hard real-time systems. Therefore, hard real-time systems make every
effort possible in predicting if a pending deadline might be missed. Returning to the weapons defense system,
let us discuss how a hard real-time system takes corrective actions when it anticipates a deadline might be
missed. In the weapons defense system example, the C& D system cal culates afiring box around the projected
missile flight path. The missile must be destroyed a certain distance away from the ship or the shrapnel can till
cause damage. If the C& D system anticipates a missed deadline (for example, if by the time the precisefiring
coordinates are computed, the missile would have flown past the safe zone), the C& D system must take
corrective action immediately. The C&D system enlarges the firing box and computes imprecise firing
coordinates by methods of estimation instead of computing for precise values. The C&D system then activates
additional weapons firing systems to compensate for thisimprecision. The result is that additional guns are
brought online to cover the larger firing box. Theideaisthat it is better to waste bullets than sink a destroyer.

This example shows why sometimes functional correctness might be sacrificed for timing correctness for many
real-time systems.

Because one or afew missed deadlines do not have a detrimental impact on the operations of soft real-time
systems, a soft real-time system might not need to predict if a pending deadline might be missed. Instead, the
soft real-time system can begin arecovery process after amissed deadline is detected.

For example, using the real-time DV D player, after amissed deadline is detected, the decodersin the DVD
player use the computed results obtained after the deadline and use the data to make a decision on what future
video frames and audio data must be discarded to re-synchronize the two streams. In other words, the decoders
find ways to catch up.

So far, we have focused on meeting the deadline or the finish time of some work or job, e.g., acomputation. At
times, meeting the start time of the job isjust asimportant. The lack of required resources for the job, such as
CPU or memory, can prevent ajob from starting and can lead to missing the job completion deadline.
Ultimately this problem becomes a resource-scheduling problem. The scheduling algorithms of areal-time
system must schedule system resources so that jobs created in response to both periodic and aperiodic events
can obtain the resources at the appropriate time. This process affords each job the ability to meet its specific
timing constraints. Thistopic is addressed in detail in Chapter 14.




1.3 The Future of Embedded Systems

Until the early 1990s, embedded systems were generally ssmple, autonomous devices with long product
lifecycles. In recent years, however, the embedded industry has experienced dramatic transformation, as
reported by the Gartner Group, an independent research and advisory firm, aswell as by other sources:

Product market windows now dictate feverish six- to nine-month turnaround cycles.

Globalization is redefining market opportunities and expanding application space.

Connectivity is now arequirement rather than a bonus in both wired and emerging wireless technologies.
Electronics-based products are more complex.

I nterconnecting embedded systems are yielding new applications that are dependent on networking
infrastructures.

The processing power of microprocessorsisincreasing at arate predicted by Moore s Law, which states
that the number of transistors per integrated circuit doubles every 18 months.

If past trends give any indication of the future, then as technology evolves, embedded software will continue to
proliferate into new applications and lead to smarter classes of products. With an ever-expanding marketplace
fortified by growing consumer demand for devices that can virtually run themselves aswell as the seemingly
limitless opportunities created by the Internet, embedded systems will continue to reshape the world for years
to come.




1.4 Pointsto Remember

An embedded system is built for a specific application. As such, the hardware and software components
are highly integrated, and the development model is the hardware and software co-design model.

Embedded systems are generally built using embedded processors.

An embedded processor is a specialized processor, such as a DSP, that is cheaper to design and produce,
can have built-in integrated devices, is limited in functionality, produces low heat, consumes low power,
and does not necessarily have the fastest clock speed but meets the requirements of the specific
applications for which it is designed.

Redl-time systems are characterized by the fact that timing correctnessisjust asimportant as functional or
logical correctness.

The severity of the penalty incurred for not satisfying timing constraints differentiates hard real-time
systems from soft real-time systems.

Redl-time systems have a significant amount of application awareness similar to embedded systems.

Real-time embedded systems are those embedded system with real-time behaviors.




Chapter 2. Basics Of Developing
For Embedded Systems

2.1 Introduction

Chapter 1 states that one characteristic of embedded systemsis the cross-platform development methodol ogy.
The primary components in the devel opment environment are the host system, the target embedded system, and
potentially many connectivity solutions available between the host and the target embedded system, as shownin
Figure2.1.
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Figure 2.1: Typica cross-platform development environment.

The essential development tools offered by the host system are the cross compiler, linker, and source-level
debugger. The target embedded system might offer adynamic loader, alink loader, a monitor, and a debug
agent. A set of connections might be avail able between the host and the target system. These connections are
used for downloading program images from the host system to the target system. These connections can also be
used for transmitting debugger information between the host debugger and the target debug agent.

Programs including the system software, the real-time operating system (RTOS), the kernel, and the application
code must be developed first, compiled into object code, and linked together into an executable image.
Programmers writing applications that execute in the same environment as used for development, called native
devel opment, do not need to be concerned with how an executable image is loaded into memory and how
execution control is transferred to the application. Embedded developers doing cross-platform devel opment,
however, are required to understand the target system fully, how to store the program image on the target
embedded system, how and where to load the program image during runtime, and how to devel op and debug the
system iteratively. Each of these aspects can impact how the code is developed, compiled, and most importantly
linked.

The areas of focusin this chapter are

the ELF object file format,

the linker and linker command file, and



mapping the executable image onto the target embedded system.

This chapter does not provide full coverage on each tool, such as the compiler and the linker, nor does this
chapter fully describe a specific object file format. Instead, this chapter focuses on providing in-depth coverage
on the aspects of each tool and the object file format that are most relevant to embedded system development.
The goal isto offer the embedded devel oper practical insights on how the components relate to one another.
Knowing the big picture allows an embedded developer to put it all together and ask the specific questions if

and when necessary.




2.2 Overview of Linkersand the Linking Process

Figure 2.2 illustrates how different tools take various input files and generate appropriate output files to
ultimately E)e used in building an executable image.
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Figure 2.2: Creating an image file for the target system.

The developer writes the program in the C/C++ source files and header files. Some parts of the program can be
written in assembly language and are produced in the corresponding assembly source files. The developer
creates a makefile for the make utility to facilitate an environment that can easily track the file modifications and
invoke the compiler and the assembler to rebuild the source files when necessary. From these source files, the
compiler and the assembler produce object files that contain both machine binary code and program data. The
archive utility concatenates a collection of object filesto form alibrary. The linker takes these object files as
input and produces either an executable image or an object file that can be used for additional linking with other
object files. The linker command file instructs the linker on how to combine the object files and where to place
the binary code and datain the target embedded system.

The main function of the linker isto combine multiple object filesinto alarger relocatable object file, a shared
object file, or afinal executable image. In atypical program, a section of code in one source file can reference
variables defined in another source file. A function in one source file can call afunction in another sourcefile.
The global variables and non-static functions are commonly referred to as global symbols. In sourcefiles, these
symbols have various names, for example, aglobal variable called foo bar or aglobal function called func_a.
In the final executable binary image, a symbol refers to an address location in memory. The content of this
memory location is either data for variables or executable code for functions.

The compiler creates a symbol table containing the symbol name to address mappings as part of the object file
it produces. When creating relocatable output, the compiler generates the address that, for each symboal, is
relative to the file being compiled. Consequently, these addresses are generated with respect to offset 0. The
symbol table contains the global symbols defined in the file being compiled, as well as the external symbols
referenced in the file that the linker needs to resolve. The linking process performed by the linker involves
symbol resolution and symbol relocation.

Symbol resolution isthe process in which the linker goes through each object file and determines, for the object
file, in which (other) object file or files the external symbols are defined. Sometimes the linker must process the
list of object files multiple times while trying to resolve all of the external symbols. When external symbols are



defined in a static library, the linker copies the object files from the library and writes them into the final image.

Symbol relocation is the process in which the linker maps a symbol reference to its definition. The linker
maodifies the machine code of the linked object files so that code references to the symbols reflect the actual
addresses assigned to these symbols. For many symbols, the relative offsets change after multiple object files
are merged. Symbol relocation requires code modification because the linker adjusts the machine code
referencing these symbols to reflect their finalized addresses. The relocation table tells the linker where in the
program code to apply the relocation action. Each entry in the relocation table contains a reference to the
symbol table. Using this reference, the linker can retrieve the actual address of the symbol and apply it to the
program location as specified by the relocation entry. It is possible for the relocation table to contain both the
address of the symbol and the information on the relocation entry. In this case, there is no reference between the
relocation table and the symbol table.

Figure 2.3 illustrates these two concepts in asimplified view and serves as an example for the following
discussions.
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Figure 2.3: Relationship between the symbol table and the relocation table.

For an executable image, all external symbols must be resolved so that each symbol has an absolute memory
address because an executable image is ready for execution. The exception to thisrule isthat those symbols
defined in shared libraries may still contain relative addresses, which are resolved at runtime (dynamic linking).

A relocatable object file may contain unresolved external symbols. Similar to alibrary, alinker-reproduced
relocatable object file is a concatenation of multiple object files with one main difference thefile is partially
resolved and is used for further linking with other object filesto create an executable image or a shared object
file. A shared object file has dual purposes. It can be used to link with other shared object files or relocatable
object modules, or it can be used as an executable image with dynamic linking.




2.3 Executable and Linking Format

Typically an object file contains

general information about the object file, such asfile size, binary code and data size, and source file name
from which it was created,

machine-architecture-specific binary instructions and data
symbol table and the symbol relocation table, and

debug information, which the debugger uses.

The manner in which thisinformation is organized in the object file isthe object file format. The idea behind a

standard object file format is to allow development tools which might be produced by different vendors-such as
acompiler, assembler, linker, and debugger that conform to the well-defined standard-to interoperate with each
other.

This interoperability means a developer can choose a compiler from vendor A to produce object code used to
form afinal executable image by alinker from vendor B. This concept gives the end developer great flexibility
in choice for devel opment tools because the devel oper can select atool based on its functiona strength rather
than its vendor.

Two common object file formats are the common object file format (COFF) and the executable and linking
format (ELF). These file formats are incompatible with each other; therefore, be sure to select the tools,
including the debugger, that recognize the format chosen for development.

We focus our discussion on ELF because it supersedes COFF. Understanding the object file format allows the
embedded devel oper to map an executable image into the target embedded system for static storage, aswell as
for runtime loading and execution. To do so, we need to discuss the specifics of ELF, aswell as how it relates
to the linker.

Using the ELF object file format, the compiler organizes the compiled program into various system-defined, as
well as user-defined, content groupings called sections. The program's binary instructions, binary data, symbol
table, relocation table, and debug information are organized and contained in various sections. Each section has
atype. Content is placed into asection if the section type matches the type of the content being stored.

A section also contains important information such as the load address and the run address. The concept of load
address versus run address is important because the run address and the load address can be different in
embedded systems. This knowledge can also be helpful in understanding embedded system loader and link
loader concepts introduced in Chapter 3.



Chapter 1 discusses the idea that embedded systems typically have some form of ROM for non-volétile storage
and that the software for an embedded system can be stored in ROM. Modifiable data must reside in RAM.
Programs that require fast execution speed a so execute out of RAM. Commonly therefore, asmall programin
ROM, called a loader, copiestheinitiaized variablesinto RAM, transfers the program code into RAM, and
begins program execution out of RAM. This physical ROM storage address is referred to as the section's load
address. The section's run address refersto the location where the section is at the time of execution. For
example, if asectioniscopied into RAM for execution, the section’'s run address refers to an addressin RAM,
which is the destination address of the |loader copy operation. The linker uses the program's run address for
symbol resolutions.

The ELF file format has two different interpretations, as shown in Figure 2.4. The linker interpretsthefileasa
linkable modul e described by the section header table, while the loader interprets the file as an executable
module described by the proaram heeder table.

Linkable File xecutable File
ELF Header ELF Header
Program Header Table Program Header Table

(optional)
Section 1 data Segment 1 data
Section 2 data
Seoﬁnn' n Data Segrnan.t n Data
Section Header Table Section Header Table
{optional)

Figure 2.4: Executable and linking format.

Listing 2.1 shows both the section header and the program header, as represented in C programming structures.
We describe the relevant fields during the course of this discussion.

Listing 2.1: Section header and program header.

n header Program header



typedef struct { typedef struct {

EIf32 Word sh_name; EIf32 Word p_type;
Elf32 Word sh_type; EIf32_Off p_offset;
EIf32 Word sh_flags; EIf32_Addr p_vaddr;
Elf32_Addr sh_addr; Elf32_Addr p_paddr;
EIf32 Off sh offset; EIf32 Word p_filesz;
Elf32_ Word sh_size, Elf32 Word p_memsz;
EIf32 Word sh_link; EIf32 Word p_flags;
Elf32_Word sh _info; Elf32 Word p_dlign;

. } EIf32_Phdr;

EIf32_Word sh_addralign;

EIf32_Word sh_entsize,

} EIf32_Shdr:

gi on header table is an array of section header structures describing the sections of an object file. A
program header table isan array of program header structures describing a loadable segment of an image that
allowsthe loader to prepare the image for execution. Program headers are applied only to executable images
and shared object files.

One of the fields in the section header structure is sh_type, which specifies the type of asection. Table 2.1 lists
some section types.
Table 2.1: Section types.

NULL I nactive header without a section.

PROGBITS Code or initialized data.

SYMTAB Symbol table for static linking.




STRTAB String table.

RELA/REL Relocation entries.

HASH Run-time symbol hash table.
DYNAMIC Information used for dynamic linking.
NOBITS Uninitialized data.

DYNSYM Symbol table for dynamic linking.

The sh_flags field in the section header specifies the attribute of a section. Table 2.2 lists some of these
attributes.
Table 2.2: Section attributes.

WRITE Section contains writeable data.
ALLOC Section contains allocated data.
EXECINSTR Section contains executable instructions.

Some common system-created default sections with predefined names for the PROGBITS are .text, .sdata, .data,
.sbss, and .bss. Program code and constant data are contained in the .text section. This section is read-only
because code and constant data are not expected to change during the lifetime of the program execution. The
.Sbss and .bss sections contain uninitialized data. The .sbss section stores small data, which isthe data such as
variables with sizes that fit into a specific size. This size limit is architecture-dependent. The result is that the
compiler and the assembler can generate smaller and more efficient code to access these dataitems. The .sdata
and .data sections contain initialized dataitems. The small data concept described for .sbss appliesto .sdata. A
text section with executable code has the EXECINSTR attribute. The .sdata and .data sections have the WRITE
attribute. The .sbss and .bss sections have both the WRITE and the ALLOC attributes.

Other common system-defined sections are .symtab containing the symbol table, .strtab containing the string
table for the program symboals, .shstrtab containing the string table for the section names, and .relaname
containing the relocation information for the section named name. We have discussed the role of the symbol
table (SYMTAB) previoudly. In Figure 2.3, the symbol name is shown as part of the symbol table. In practice,
each entry in the symbol table contains areference to the string table (STRTAB) where the character
representation of the name is stored.

The devel oper can define custom sections by invoking the linker command .section. For example, where the
source files states
.section ny_section

the linker creates a new section called my_section. The reasons for creating custom named sections are
explained shortly.

The sh_addr is the address where the program section should reside in the target memory. The p_paddr isthe



address where the program segment should reside in the target memory. The sh_addr and the p_paddr fields
refer to the load addresses. The loader uses the |oad address field from the section header as the starting
address for the image transfer from non-volatile memory to RAM.

For many embedded applications, the run address is the same as the load address. These embedded
applications are directly downloaded into the target system memory for immediate execution without the need
for any code or data transfer from one memory type or location to another. This practice is common during the
development phase. We revisit this topic in Chapter 3, which covers the topic of image transfer from the host
system to the target system.




2.4 M apping Executable Imagesinto Target
Embedded Systems

After multiple source files (C/C++ and assembly files) have been compiled and assembled into ELF object
files, the linker must combine these object files and merge the sections from the different object filesinto
program segments. This process creates a single executable image for the target embedded system. The
embedded devel oper uses linker commands (called linker directives) to control how the linker combines the
sections and allocates the segments into the target system. The linker directives are kept in the linker command
file. The ultimate goal of creating alinker command fileis for the embedded developer to map the executable
image into the target system accurately and efficiently.

2.4.1 Linker Command File

The format of the linker command file, as well asthe linker directives, vary from linker to linker. It isbest to
consult the programmer s reference manual from the vendor for specific linker commands, syntaxes, and
extensions. Some common directives, however, are found among the majority of the available linkers used for
building embedded applications. Two of the more common directives supported by most linkers are MEMORY
and SECTION.

The MEMORY directive can be used to describe the target system s memory map. The memory map liststhe
different types of memory (such as RAM, ROM, and flash) that are present on the target system, along with the
ranges of addresses that can be accessed for storing and running an executable image. An embedded devel oper
needs to be familiar with the addressable physical memory on atarget system before creating alinker command
file. One of the best ways to do this process, other than having direct access to the hardware engineering team
that built the target system, isto look at the target system s schematics, as shown in Figure 2.5, and the
hardware documentation. Tveingglv I '\\L,pthe hardware documentation describes the target system s memory map.
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Figure 2.5: Simplified schematic and memory map for atarget system.

The linker combines input sections having the same name into a single output section with that name by defaullt.
The devel oper-created, custom-named sections appear in the object file as independent sections. Sometimes
devel opers might want to change this default linker behavior of only coalescing sections with the same name.
The embedded devel oper might also need to instruct the linker on where to map the sections, in other words,
what addresses should the linker use when performing symbol resolutions. The embedded developer can use the
SECTION directive to achieve these goals.

The MEMORY directive defines the types of physical memory present on the target system and the address

range occupied by each physical memory block, as specified in the following generalized syntax
VEMORY  {
area-nane : org = start-address, |en = nunber-of-bytes



In the example shown in Figure 2.5, three physical blocks of memory are present:

aROM chip mapped to address space location O, with 32 bytes,

some flash memory mapped to address space location 0x40, with 4,096 bytes, and

ablock of RAM that starts at origin 0x10000, with 65,536 bytes.

Trandating this memory map into the MEMORY directiveisshownin Listing 2.2. The named areas are ROM,
FLASH, and RAM.

Ligting 2.2: Memory map.

Y {

ROM origin = 0x0000h, Iength = 0x0020h
FLASH. origin = 0x0040h, |ength = 0x1000h
RAM origin = 0x1000h, |ength = 0x10000h

CTION directive tells the linker which input sections are to be combined into which output section,
which output sections are to be grouped together and allocated in contiguous memory, and where to place each
section, aswell as other information. A general notation of the SECTION command isshownin Listing 2.3.

Listing 2.3: SECTION command.

ON {
out put-section-nane : { contents } > area-nane

GROUP {
[ ALI GN( expressi on)]
section-definition

} > area-nane

e example shown in Figure 2.6 contains three default sections (.text, .data, and .bss), as well as two
devel oper-specified sections (loader and my_section), contained in two object files generated by a compiler or
assembler (filel.o and file2.0). Trandating this example into the MEMORY directive isshownin Listing 2.4.

Executable Image

“loader” section
filel.0 * | coda/data (fle1.0) |
“loader" section text section file2.0
j Aexct (fle1 .0} -text section
text saction | text (file2.0) * || code
[ my_section (flez.0) 47 P
Jdata secton Jdata section coda
» | .data (file1.0) .data section
| data
Jbss section | datn (fle2.0)
] o secor ﬁ
bss (file1.0)
.bss (file2.0) =

Figure 2.6: Combining input sections into an executable image.
Listing 2.4: Example code.



my_section
*(.text)
}
| oader : > FLASH
GROUP ALIGN (4) :

{
.text,
.data : {}
.bss : {}
} >RAM

e SECTION command in the linker command file instructs the linker to combine the input section named
my_section and the default .text sections from all object filesinto the final output .text section. The loader
section is placed into flash memory. The sections .text, .data, and .bss are grouped together and allocated in
contiguous physical RAM memory aligned on the 4-byte boundary, as shownin Figure 2.7.

Executable Image Target Memory

“loader” section ROM 0x00000R
codeldata (file1.0) } 0x0001Fh
Aext section Flash 0x00040h

3 file1. v

it (et ol 0x0103Fh
Jtext (file2.o)

my_section (file2.a) 0x10000R

.data section

.data (file1.0) ] _ 0x1FFFFh
data (fle2.0) |
.bss section
Jbss (file1.0)
bss (file2.0) '

Figure 2.7: Mapping an executable image into the target system.
Tips on section allocation include the following:

allocate sections according to size to fully use available memory, and

examine the nature of the underlying physical memory, the attributes, and the purpose of a section to
determine which physical memory is best suited for allocation.

2.4.2 M apping Executable | mages

Various reasons exist why an embedded devel oper might want to define custom sections, as well asto map
these sections into different target memory areas as shown in the last example. The following sections list some
of these reasons.

Module Upgradeability



Chapter 1 discusses the storage options and upgradability of software on embedded systems. Software can be
easily upgraded when stored in non-volatile memory devices, such as flash devices. It is possible to upgrade
the software dynamically while the system is still running. Upgrading the software can involve downloading the
new program image over either aserial line or a network and then re-programming the flash memory. The
loader in the example could be such an application. Theinitial version of the loader might be capable of
transferring an image from ROM to RAM. A newer version of the loader might be capable of transferring an
image from the host over the serial connection to RAM. Therefore, the loader code and data section would be
created in a custom loader section. The entire section then would be programmed into the flash memory for easy
upgradeability in the future.

Memory Size Limitation

The target system usually has different types of physica memory, but each islimited in size. Attimes, itis
impossibleto fit al of the code and data into one type of memory, for example, the SDRAM. Because SDRAM
has faster accesstime than DRAM, it is always desirable to map code and datainto it. The available physica
SDRAM might not be large enough to fit everything, but plenty of DRAM is available in the system. Therefore,
the strategy is to divide the program into multiple sections and have some sections allocated into the SDARM,
while the rest is mapped into the DRAM. For example, an often-used function along with a frequently searched
lookup table might be mapped to the SDRAM. The remaining code and data is allocated into the DRAM.

Data Protection
Programs usually have various types of constants, such asinteger constants and string constants. Sometimes

these constants are kept in ROM to avoid accidental modification. In this case, these constants are part of a
specia data section, which is allocated into ROM.

2.4.3 Examplein Practice

Consider an example system containing 256 bytes of ROM, 16KB of flash memory, and two blocks of RAM.
RAMBO0 is 128KB of SDRAM, and RAMB1 is 2MB of DRAM. An embedded application with a number of
sections, aslisted in Table 2.3, needs to be mapped into this target system.

Table 2.3: Example embedded application with sections.

Sections Size




.Sdata 2KB R/W Containsinitialized data less than 64KB
bss 128KB RW Contains uninitialized data larger than 64KB
.data 512KB RW Containsinitialized data larger than 64KB
_monitor 54KB RD Contains the monitor code

text 512KB RD Contains other program code

1. RD = read only; R/W = readable and writeable

One possible alocation is shown in Listing 2.5; it considers why an embedded engineer might want grester

section allocation control .

Listing 2.5: Possible section allocation.

Y {

ROM origin = 0x00000h, |length = 0x000100h

0x004000h
0x020000h
0x200000h

FLASH: origin
RAMBO: origin
RAMBL: origin

0x00110h, length
0x05000h, Iength
0x25000h, Iength

}
SECTI ON {

.rodata : > ROM

_l oader : > FLASH

_wflash : > FLASH

_monitor : > RAMBO

.sbss (ALIGN 4) : > RAMBO
.sdata (ALIGN 4) : > RAMBO
.text @ > RAMB1

.bss (ALIGN 4) : > RAMBL
.data (ALIGN 4) : > RAMB1

ISprogram allocation is shown in Figure 2.8 (page 34). The section allocation strategies applied include the

following:

The .rodata section contains system initialization parameters. Most likely these default values never

change; therefore, alocate this section to ROM.

The loader program is usually part of the system program that executes at startup. The _loader and the
_wflash sections are allocated into flash memory because the loader code can be updated with new
versions that understand more object formats. Y ou need the flash memory programmer for this purpose,
which can also be updated. Therefore, section _wflash is alocated into the flash memory aswell.




The embedded programmer interacts with the monitor program to probe system execution states and help
debug application code; therefore, it should be responsive to user commands. SDRAM isfaster than
DRAM, with shorter access time. Therefore, section _monitor is allocated into RAMBO.

RAMBO till has space left to accommodate both sections .sbss and .sdata. The alocation strategy for
these two sectionsis to use the leftover fast memory fully.

The remaining sections (.text, .bss, and .data) are allocated into RAMB1, which is the only memory that
can accommodate all of these large sections.

ROM 0000000
} ' -
0001100
_loader ] FLASH
_wilash J Ow0410Fh
monitor | 050000
shss g *
Ox24FFFh
sdata J O 250000
" RAMB1
daxt
bss - -
E T
(x224FFFh

Figure 2.8: Mapping an executable image into the target system.




2.5 Pointsto Remember

Some points to remember include the following:

The linker performs symbol resolution and symbol relocation.

An embedded programmer must understand the exact memory layout of the target system towards which
development isaimed.

An executable target image is comprised of multiple program sections.

The programmer can describe the physical memory, such asits size and its mapping address, to the linker
using the linker command file. The programmer can aso instruct the linker on combining input sections
into output sections and placing the output program sections using the linker command file.

Each program section can reside in different types of physical memory, based on how the section is used.
Program code (or .text section) can stay in ROM, flash, and RAM during execution. Program data (or
.data section) must stay in RAM during execution.




Chapter 3. Embedded System
Initialization

3.1 Introduction

It takes just minutes for a developer to compile and run a Hello World! application on a non-embedded
system. On the other hand, for an embedded developer, the task isnot so trivial. It might take days before seeing
asuccessful result. This process can be a frustrating experience for a devel oper new to embedded system
development.

Booting the target system, whether athird-party evaluation board or a custom design, can be a mystery to many
newcomers. Indeed, it is daunting to pick up a programmer s reference manua for the target board and pore
over tables of memory addresses and registers or to review the hardware component interconnection diagrams,
wondering what it all means, what to do with the information (some of which makes little sense), and how to
relate the information to running an image on the target system.

Questionsto resolve at this stage are

how to load the image onto the target system,
where in memory to load the image,
how to initiate program execution, and

how the program produces recognizable output.
We answer these questions in this chapter and hopefully reduce frustration by demystifying the booting and
initialization process of embedded systems.

Chapter 2 discusses constructing an executable image with multiple program sections according to the target
system memory layout. After the final image is successfully built and residing on the host system, the next step is
to execute it on the target.

The focus of this chapter is



image transfer from the host to the target system,

the embedded monitor and debug agent,

the target system loader,

the embedded system booting process,

various initialization procedures, and

an introduction to BDM and JTAG interfaces.




3.2 Target System Toolsand Image Transfer

An executable image built for atarget embedded system can be transferred from the host development system
onto the target, which is called loading the image, by:

Programming the entire image into the EEPROM or flash memory.

Downloading the image over either a seria (typically RS-232) or network connection. This process
requires the presence of adatatransfer utility program on the host system, as well as the presence of a
target loader, an embedded monitor, or atarget debug agent on the target system.

Downloading the image through either aJTAG or BDM interface (discussed in section 3.5).

These approaches are the most common, and thislist is by no means comprehensive. Some of the possible
host-to-target connectivity solutions are shown in Figure 2.1. Figure 3.1 exemplifies a target embedded system.
We refer to the ELF image format (introduced in Chapter 2) exclusively throughout this chapter.
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Figure 3.1: View of the target embedded system.

The embedded software for the final product is commonly stored in either ROM or the flash memory. The entire
executable image is burned into the ROM or flash memory using specia equipment. If ROM is used, the ROM
chip isset into its socket on the target board. For embedded system boards that have both ROM and flash
memory, the next step isto set the necessary jumpers. Jumpers are the part of the target board's wiring that
controls which memory chip the processor uses to start executing itsfirst set of instructions upon reboot. For
example, if theimageis stored in the flash memory and the jumpers are set to use the flash memory, the
processor fetchesits first instruction from the starting address where the flash is mapped. Therefore, set the
jumpers appropriately according to the image storage.

Thisfinal production method, however, isimpractical during the devel opment stage because developers
construct software in incremental steps with high frequency. The processis interactive in that a portion of the
code iswritten, debugged, and tested, and the entire process then repeats for the new code. Reprogramming the
EEPROM or the flash memory each time the code changes due to bugs or code addition is time consuming. The
methods for downloading the image over a serial or a network connection or for downloading the image through
aJTAG or BDM interface solve this problem by transferring the image directly into the target system's RAM
memory.

3.2.1 Embedded L oader



A common approach taken at the early development phaseis to write aloader program for the target side,
which is called the loader, and use the loader to download the image from the host system. In the scenario
shown in Figure 3.1, the loader has a small memory footprint, so it typically can be programmed into a ROM
chip. A datatransfer utility resides on the host system side. The loader works in conjunction with its host utility
counterpart to perform the image transfer.

After the loader is written, it is programmed into the ROM. Part of the same ROM chip is occupied by the boot
image. At aminimum, this boot image (typically written by a hardware engineer) consists of the code that
executes on system power up. This code initializes the target hardware, such asthe memory system and the
physical RAM, into aknown state. In other words, the boot image prepares the system to execute the loader.
The loader begins execution after this boot image completes the necessary initialization work.

For thistransfer method to work, a data transfer protocol, as well as the communication parameters, must be
agreed upon between the host utility and the target |oader. The data transfer protocol refers to the transfer rules.
For example, atransfer protocol might be that the image transfer request should be initiated from the loader to
the host utility; in which case, the host utility sends out the image file size followed by the actual image, and the
loader sends an acknowledgement to the host utility upon completion. Data transfer rate, such as the baud rate
for the serial connection, and per packet size are examples of communication parameters. The loader and the
utility program operate as a unit, which is often capable of using more than one type of connection. At a
minimum, the transfer takes place over the serial connection. More sophisticated |oaders can download images
over the network, for example, over the Ethernet using protocols such asthe Trivial File Transfer Protocol
(TFTP) or the File Transfer Protocol (FTP). In this case, the host utility programis either the TFTP server or
the FTP server respectively.

Both proprietary and well-known transfer protocols can be applied in either the serial or the network
connection, but more commonly proprietary protocols are used with a serial connection.

The loader downloads the image directly into the RAM memory. The loader needs to understand the object file
format (for example, the ELF format) because, as discussed in Chapter 2, the object file contains information
such as the load address, which the loader uses for section placement.

The loader transfers control to the downloaded image after the transfer completes. A loader with flash
programming capability can also transfer the image into the flash memory. In that case, the board jumpers must
be set appropriately so that the processor executes out of flash memory after the image download compl etes.

A loader can be part of the fina application program, and it can perform other functions in addition to
downloading images, as discussed in more detail later in this chapter.

3.2.2 Embedded Monitor

An dternative to the boot image plus loader approach is to use an embedded monitor. A monitor isan
embedded software application commonly provided by the target system manufacturer for its evaluation boards.
The monitor enables devel opers to examine and debug the target system at run time. Similar to the boot image,
the monitor is executed on power up and performs system initialization such as

initializing the required peripheral devices, for example, the serial interface and the system timer chip for
memory refresh, a a minimum,



initializing the memory system for downloading the image, and

initializing the interrupt controller and installing default interrupt handlers.

The monitor has awell-defined user interface accessible through aterminal emulation program over the seria
interface. The monitor defines a set of commands allowing the devel oper to

download the image,

read from and write to system memory locations,

read and write system registers,

set and clear different types of breakpoints,

single-step instructions, and

reset the system.

The way in which the monitor downloads the image from the host system over the serial or network connection
issimilar to how the loader does it. The monitor is capable of downloading the image into either the RAM
memory or the flash memory. In essence, the monitor has both the boot image and the loader functionalities
incorporated but with the added interactive debug capability. The monitor is still present while the newly
downloaded image executes. A specia keystroke on the host system, for example, CTRL+D, interrupts the
program execution and reactivates the monitor user interface so the developer can conduct interactive
debugging activities.

The monitor is generally developed by the hardware engineers and is aso used by the hardware engineersto
perform both system device diagnostics and low-level code debugging. Some manufactures give the monitor
source code to their customers. In that case, the code can be extracted and modified to work with a
custom-designed target board.

3.2.3 Target Debug Agent

The target debug agent functions much like the monitor does but with one added feature: the target agent gives
the host debugger enough information to provide visua source-level debug capability. Again, an agreed-upon
communication protocol must be established between the host debugger and the target agent. The host debugger
is something that the host tools vendor offers. Sometimes a RTOS vendor offers a host-based debugger smply
because the debug agent is an integral part of the RTOS. The host debugger vendor works closely with the
RTOS vendor to provide afully compatible tool. The debug agent has built-in knowledge of the RTOS objects
and services, which allows the devel oper to explore such objects and services fully and visually.






3.3 Target Boot Scenarios

We have described the software components involved in transferring images from the host to the target. In this
section, we describe the details of the loading process itself and how control is transferred to the newly
acquired image.

Embedded processors, after they are powered on, fetch and execute code from a predefined and hard-wired
address offset. The code contained at this memory location is called the reset vector. The reset vector isusually
ajump instruction into another part of the memory space where the red initialization code is found. The reason
for jJumping to another part of memory isto keep the reset vector small. The reset vector belongs to a small
range of memory space reserved by the system for specia purposes. The reset vector, as well asthe system
boot startup code, must be in permanent storage. Because of thisissue, the system startup code, called the
bootstrap code, resides in the system ROM, the on-board flash memory, or other types of non-volatile memory
devices. We will revisit the loader program from the system-bootstrapping perspective. In the discussions to
follow, the loader refersto the code that performs system bootstrapping, image downloading, and initialization.

The concepts are best explained through an example. In this example, assume an embedded |oader has been
developed and programmed into the on-board flash memory. Also, assume that the target image contains various
program sections. Each section has a designated location in the memory map. The reset vector iscontained in a
small ROM, which is mapped to location 0x0h of the address space. The ROM contains some essential initia
values required by the processor on reset. These values are the reset vector, theinitial stack pointer, and the
usable RAM address.

In the example shown in Figure 3.2, the reset vector is ajump instruction to memory location 0x00040h; the
reset vector transfers program control to the instruction at this address. Startup initialization code begins at this
flash memory address. This system initiaization code contains, anong other things, the target image loader
program and the default system exception vectors. The system exception vectors point to instructions that reside
in the flash memory. See Chapter 10 for detailed discussions on interrupts, exceptions, and exception vectors
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Figure 3.2: Example bootstrap overview.

Thefirst part of the system bootstrap processis putting the system into a known state. The processor registers
are set with appropriate default values. The stack pointer is set with the value found in the ROM. The |loader
disables the system interrupts because the system is not yet prepared to handle the interrupts. The loader also
initializes the RAM memory and possibly the on-processor caches. At this point, the loader performs limited
hardware diagnostics on those devices needed for its operation.



Asdiscussed in Chapter 2, program execution isfaster in RAM than if the executable code runs directly out of
the flash memory. To this end, the loader optionally can copy the code from the flash memory into the RAM.
Because of this capability, a program section can have both aload address and a run address. The load address
is the address in which the program sections reside, while the run address is the address to which the loader
program copies the program sections and prepares it for execution. Enabling runtime debugging is another main
reason for a program to execute out of the RAM. For example, the debugger must be able to modify the runtime
code in order to insert breakpoints.

An executable image containsinitialized and uninitialized data sections. These sections are both readable and
writeable. These sections must reside in RAM and therefore are copied out of the flash memory into RAM as
part of system initialization. Theinitialized data sections (.data and .sdata) contain the initial values for the
global and static variables. The content of these sections, therefore, is part of the final executable image and is
transferred verbatim by the loader. On the other hand, the content for the uninitialized data sections .bss and
.sbss) isempty. The linker reserves space for these sections in the memory map. The allocation information for
these sections, such as the section size and the section run address, is part of the section header. It is the loader
sjob to retrieve this information from the section header and allocate the same amount of memory in RAM
during the loading process. The loader places these sections into RAM according to the section s run address.

An executable image islikely to have constants. Constant datais part of the .const section, which is read-only.
Therefore, it is possible to keep the .const section in read-only memory during program execution. Frequently
accessed constants, such as lookup tables, should be transferred into RAM for performance gain.

The next step in the boot processis for the loader program to initialize the system devices. Only the necessary
devices that the loader requires areinitialized at this stage. In other words, a needed deviceisinitialized to the
extent that arequired subset of the device capabilities and features are enabled and operational. In the majority

of cases, these devices are part of the 1/0 system; therefore, these devices are fully initialized when the
downloaded image performs I/O system initialization as part of the startup sequence.

Now the loader program is ready to transfer the application image to the target system. The application image
containsthe RTOS, the kernel, and the application code written by the embedded devel oper. The application
image can come from two places:

the read-only memory devices on the target, or

the host devel opment system.

We describe three common image execution scenarios:

execute from ROM while using RAM for data,

execute from RAM after being copied from ROM, and

execute from RAM after being downloaded from a host system.



In the discussions to follow, the term ROM refers to read-only memory devicesin general.

3.3.1 Executing from ROM Using RAM for Data

Some embedded devices have such limited memory resources that the program image executes directly out of
the ROM. Sometimes the board vendor provides the boot ROM, and the code in the boot ROM does not copy
instructions out to RAM for execution. In these cases, however, the data sections must still residein RAM.
Figure 3.3 shows thi sg%)t scenario.
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Figure 3.3: Boot sequence for an image running from ROM.

Two CPU registers are of concern: the Instruction Pointer (IP) register and the Stack Pointer (SP) register. The
| P points to the next instruction (code in the .text section) that the CPU must execute, while the SP points to the
next free address in the stack. The C programming language uses the stack to pass function parameters during
function invocation. The stack is created from a space in RAM, and the system stack pointer registers must be
set appropriately at start up.

The boot sequence for an image running from ROM is asfollows:

1.

The CPU s 1P ishardwired to execute the first instruction in memory (the reset vector).

The reset vector jumps to the first instruction of the .text section of the boot image. The .text section
remainsin ROM; the CPU uses the IP to execute .text. The code initializes the memory system, including
the RAM.

The .data section of the boot image is copied into RAM because it is both readable and writeable.

Spaceisreserved in RAM for the .bss section of the boot image because it is both readable and
writeable. There is nothing to transfer because the content for the .bss section is empty.



Stack spaceisreserved in RAM.

The CPU s SP register is set to point to the beginning of the newly created stack. At this point, the boot
completes. The CPU continues to execute the code in the .text section until it is complete or until the
system is shut down.

Note that the boot image is not in the ELF format but contains binary machine code ready for execution. The
boot image is created in the ELF format. The EEPROM programmer software, however, removes the

EL F-specific data, such as the program header table and the section header table, when programming the boot
image into the ROM, so that it is ready for execution upon processor reset.

The boot image needs to keep internal information in its program, which is critical to initializing the data
sections, because the section header table is not present. As shown in Figure 3.3, the .data section is copied into
RAM initsentirety. Therefore, the boot image must know the starting address of its data section and how big
the data section is. One approach to thisissue isto insert two specia labels into the .data section: one label
placed at the section s beginning and the other placed at the end. Specia assembly code iswritten to retrieve
the addresses of these labels. These are the load addresses of the labels. The linker reference manual should
contain the specific program code syntax and link commander file syntax used for retrieving the load address of
asymbol. The difference between these two addresses is the size of the section. A similar approach is taken for
the .bss section.

If the .text section is copied into RAM, two dummy functions can be defined. These dummy functions do nothing
other than return from function. One function is placed at the beginning of the .text section, while the other is
placed at the end. Thisreason is one why an embedded devel oper might create custom sections and instruct the
linker on where to place a section, aswell as how to combine the various sections into a single output section
through the linker command file.

3.3.2 Executing from RAM after Image Transfer from ROM

In the second boot scenario, the boot loader transfers an application image from ROM to RAM for execution.
The large application image is stored in ROM in a compressed form to reduce the storage space required. The
loader must decompress thisimage before it can initialize the sections of that image. Depending on the
compression agorithm used and whether enough space isleft in the ROM, some state information produced
from the compression work can be stored to simplify image decompression. The loader needs awork areain
RAM for the decompression process. It is common and good practice to perform checksum calculations over
the boot image to ensure the image integrity before loading and execution.

Thefirst six steps are identical to the previous boot scenario. After completing those steps, the process
continues as follows:
7. The compressed application imageis copied from ROM to RAM.

8 10. Initialization steps that are part of the decompression procedure are completed.

11. The loader transfers control to theimage. Thisisdone by jumping to the beginning address of the
initialized image using a processor-specific jump instruction. This jump instruction effectively sets anew
value into the instruction pointer.

12. Asshown in Figure 3.4, the memory areathat the loader program occupies is recycled. Specificaly, the
stack pointer isreinitialized (see the dotted line) to point to this area, so it can be used as the stack for the new



program. The deggmpr onwork areais also recycled into the available memory space implicitly.
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Figure 3.4: Boot sequence for an image executing from RAM after transfer from ROM.

Note that the loader program is till available for use because it is stored in ROM. Making the loader available
for later use is often intentional on the designer s part. Imagine a situation in which the loader program has a
built-in monitor. As mentioned earlier, part of the monitor startup sequenceisto install default interrupt
handlers. Thisissueis extremely important because during the devel opment phase the program under
construction isincomplete and is being constantly updated. As such, this program might not be able to handle
certain system interrupts and exceptions. It is beneficia to have the monitor conduct default processing in such
cases. For example, a program avoids processing memory access exceptions by not installing an exception
handler for it. In this case, the monitor takes control of the system when the program execution triggers such an
exception, for example, when the program crashes. The developer then gets the opportunity to debug and
back-trace the execution sequence through the monitor inter- face. Asindicated earlier, amonitor allowsthe
developer to modify the processor registers. Therefore, as soon as the bug is uncovered and a new program
image is built, the devel oper can set the instruction pointer register to the starting address of the loader program
in ROM, effectively transferring control to the loader. The result is that the loader begins to download the new
image and reinitializes the entire system without having to power cycle on the system.

Similarly, another benefit of running the loader out of the ROM isto prevent a program that is behaving badly
from corrupting its code in systems without protection from the MMU.

In this example, the loader image isin an executable machine code format. The application imageisinthe ELF
format but has been compressed through an algorithm that works independently of the object file format. The
application image isin the ELF format so that the loader can be written as a generic utility, able to load many
application program images. If the application imageisin the ELF format, the loader program can extract the
necessary information from the image for initiaization.

3.3.3 Executing from RAM after Image Transfer from Host

In the third boot scenario, the target debug agent transfers an application image from the host system into RAM
for execution. This practiceistypical during the later devel opment phases when the magjority of the device
drivers have been fully implemented and debugged. The system can handle interrupts and exceptions correctly.
At this stage, the target system facilitates a stable environment for further application development, allowing the
embedded devel oper to focus on application design and implementation rather than the low-level hardware
details.

The debug agent is RTOS-aware and understands RTOS objects and services. The debug agent can
communicate with a host debugger and transfer target images through the host debugger. The debug agent can
also function as a standalone monitor. The developer can access the command line interface for the target debug



agent through a simple terminal program over the serial link. The developer can issue commands over the
command line interface to instruct the debug agent on the target image slocation on the host system and to
initiate the transfer.

The debug agent downloads the image into atemporary areain RAM first. After the download is complete and
the image integrity verified, the debug agent initializes the image according to the information presented in the
program section header tq:t;llje. This boot scenario is shown in Figure 3.5.
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Figure 3.5: Boot sequence for an image executing from RAM after transfer from the host system.

Thefirst six steps are identical to theinitial boot scenario. After completing those steps, the process continues
asfollows:

7. The application image is downloaded from the host development system.

8. Theimage integrity is verified.

9. Theimage is decompressed if necessary.

10 12. The debug agent loads the image sectionsinto their respective run addressesin RAM.

13. The debug agent transfers control to the download image.

Thereisagood reason why the memory area used by the debug agent is not recycled. In this example, the
downloaded image contains an RTOS, which isintroduced in Chapter 4. One of the core components of a
RTOS is a scheduler, which facilitates the simultaneous existence and execution of multiple programs, called
tasks or threads. The scheduler can save the execution state information of the debug agent and revive the agent
later. Thus, the debug agent can continue to communicate with the host debugger while the downloaded image
executes, providing interactive, visual, source-level debugging.




3.4 Target System Softwar e Initialization Sequence

The target image referred to repeatedly in the last section is a combination of sophisticated software
components and modules as shown in Figure 3.6. The software components include the following: the board
support package (BSP), which contains afull spectrum of driversfor the system hardware components and
devices; the RTOS, which provides basic services, such as resource synchronization services, 1/0 services,
and scheduling services needed by the embedded applications; and the other components, which provide
additional services, such asfile system services and network services.
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Figure 3.6: Software components of atarget image.
These software components perform full system initialization after the target image gains control from the
loading program.

Assuming the target image is structured as shown in Figure 3.6, then Figure 3.7 illustrates the steps required to
initialize most target systems. The main stages are

hardware initialization,

RTOS initialization, and

application initialization.

Note that these steps are not al that are required to initialize the target system. Rather, this summary provides a
high-level example from which to learn. Each stage is discussed more thoroughly in the following sections.

3.4.1 Hardwar eI nitialization

The previous sections described aspects of steps 1 and 2 in Figure 3.7 in which a boot image executes after the
CPU begins executing instructions from the reset vector. Typicaly at this stage, the minimum hardware
initialization required to get the boot image to execute is performed, which includes:



starting execution at the reset vector

2.
putting the processor into a known state by setting the appropriate registers:
o]
getting the processor type
o]
getting or setting the CPU s clock speed
3.
disabling interrupts and caches
4.
initializing memory controller, memory chips, and cache units:
o]
getting the start addresses for memory
o]
getting the size of memory
o]
performing preliminary memory tests, if required
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Figure 3.7: The software initialization process.

After the boot sequence initializes the CPU and memory, the boot sequence copies and decompresses, if
necessary, the sections of code that need to run. It also copies and decompressesits data into RAM.

Most of the early initialization codeisin low-level assembly language that is specific to the target system s
CPU architecture. Later-stage initialization code might be written in ahigher-level programming language, such
asC.

As the boot code executes, the code calls the appropriate functions to initialize other hardware components, if

present, on the target system. Eventually, al devices on the target board are initialized (as shown in step 3 of
Figure 3.7). These might include the following:

Setting up execution handlers;
initializing interrupt handlers;
initializing businterfaces, such asVME, PCI, and USB; and

initializing board peripherals such as serial, LAN, and SCSI.

Most embedded systems developers consider steps 1 and 2 in Figure 3.7 astheinitial boot sequence, and steps
1to 3 asthe BSPinitialization phase. Steps 1 to 3 are also called the hardware initialization stage.

Writing aBSP for a particular target system is not trivial. The developer must have a good understanding of the
underlying hardware components. Along with understanding the target system s block diagrams, data flow,
memory map, and interrupt map, the devel oper must also know the assembly language for the target system s

MIi Croprocessor.

Developers can save agreat deal of time and effort by using sample BSPsif they come with the target
evauation board or from the RTOS vendor. Typically, the microprocessor registers that a devel oper needsto
program are listed in these BSPs, along with the sequence in which to work with them to properly initialize
target-system hardware.

A completed BSP initialization phase has initialized al of the target-system hardware and has provided a set of
function callsthat upper layers of software (for example, the RTOS) can use to communicate with the hardware
components of the target system.

3.4.2 RTOSInitialization

Step 4 of Figure 3.7 begins the RTOS software initiaization. Key things that can happen in steps 4 to 6 include:
1.

initializing the RTOS



initializing different RTOS objects and services, if present (usually controlled with a user-configurable
header file):

(0]

task objects

semaphore objects

message-queue objects

timer services

interrupt services

memory-management services

creating necessary stacksfor RTOS

initializing additional RTOS extensions, such as.
0

TCP/IP stack

file systems

starting the RTOS and itsinitial tasks

The components of an RTOS (for example, tasks, semaphores, and message queues) are discussed in more
detail in later chapters of this book. For now, note that the RTOS abstracts the application code from the
hardware and provides software objects and services that facilitate embedded-systems application
development.

3.4.3 Application Softwar e I nitialization

After the RTOS isinitialized and running with the required components, control istransferred to a user-defined
application. Thistransfer takes place when the RTOS code calls a predefined function (that is RTOS



dependent) which isimplemented by the user-defined application. At this point, the RTOS services are
available. This application also goes through initialization, during which all necessary objects, services, data
structures, variables, and other constructs are declared and implemented. For asimple, user application such as
the hello world application, al the work can be done in this function. This user-defined application (maybe
the helloworld application) might finally produce its impressive output. On the other hand, for a complex
application, it will create task or tasks to perform the work. These application-created tasks will execute once
the kernel scheduler runs. The kernel scheduler runs when this control-transfer function exits.




3.5 On-Chip Debugging

Many silicon vendors recognize the need for built-in microprocessor debugging, called on-chip debugging
(OCD). BDM and JTAG are two types of OCD solutions that allow direct access and control over the
microprocessor and system resources without needing software debug agents on the target or expensive
in-circuit emulators. As shown in Figure 3.1, the embedded processor with OCD capability provides an
external interface. The developer can use the external interface to download code, read or write processor
registers, modify system memory, and command the processor to execute one instruction and halt, thus
facilitating single-step debugging. Depending on the selected processor, it might be possible to disable the
on-chip peripheraswhile OCD isin effect. It might also be possible to gain a near real-time view of the
executing system state. OCD is used to solve the chicken-and-egg problem often encountered at the beginning
development stage-if the monitor isthe tool for debugging a running program, what debugs the monitor whileit's
developed? The powerful debug capabilities offered by the OCD combined with the quick turnaround time
required to set up the connection means that software engineers find OCD solutions invaluable when writing
hardware initialization code, low-level drivers, and even applications.

JTAG stands for Joint Test Action Group, which was founded by electronics manufacturers to develop a new
and cost-effective test solution. The result, produced by the JTAG consortium, is sanctioned by the IEEE1149.1
standard.

BDM stands for background debug mode. It refers to the microprocessor debug inter- face introduced by
Motorola and found on its processor chips. The term also describes the non-intrusive nature (on the executing
system) of the debug method provided by the OCD solutions.

An OCD solution is comprised of both hardware and software. Special hardware devices, called personality
modules, are built for the specific processor type and are required to connect between the OCD interface on the
target system and the host devel opment system. The interface on the target system isusually an 8- or 10-pin
connector. The host side of the connection can be the parallel port, the serial port, or the network interface. The
OCD-aware host debugger displays system state information, such as the contents of the processor registers, the
system memory dump, and the current executing instruction. The host debugger provides the interface between
the embedded software developer and the target processor and its resources.




3.6 Pointsto Remember

Some points to remember include the following:

Developers have many choices for downloading an executable image to atarget system. They can use
target-monitor-based, debug-agent-based, or hardware-assisted connections.

The boot ROM can contain a boot image, loader image, monitor image, debug agent, or even executable
image.

Hardware-assisted connections are ideal, both when first initializing a physical target system aswell as
later, for programming the final executableimage into ROM or flash memory.

Some of the different ways to boot atarget system include running an image out of ROM, running an image
out of RAM after copying it from ROM, and running an image out of RAM after downloading it from a
host.

A system typically undergoes three distinct initialization stages: hardware initialization, OS initialization
(RTOS), and application initialization.

After the target system isinitialized, application devel opers can use this platform to download, test, and
debug applications that use an underlying RTOS.




Chapter 4: Introduction To
Real-Time Operating Systems

4.1 Introduction

A redl-time operating system (RTOS) is key to many embedded systems today and, provides a software
platform upon which to build applications. Not all embedded systems, however, are designed with an RTOS.
Some embedded systems with relatively smple hardware or a small amount of software application code might
not require an RTOS. Many embedded systems, however, with moderate-to-large software applications require
some form of scheduling, and these systems require an RTOS.

This chapter sets the stage for all subsequent chaptersin this section. It describes the key concepts upon which
most real-time operating systems are based. Specifically, this chapter provides

abrief history of operating systems,
adefinition of an RTOS,
adescription of the scheduler,
adiscussion of objects,
adiscussion of services, and

the key characteristics of an RTOS.




4.2 A Brief History of Operating Systems

In the early days of computing, developers created software applications that included low-level machine code
to initialize and interact with the system's hardware directly. Thistight integration between the software and
hardware resulted in non-portable applications. A small change in the hardware might result in rewriting much
of the application itself. Obvioudly, these systems were difficult and costly to maintain.

Asthe software industry progressed, operating systems that provided the basic software foundation for
computing systems evolved and facilitated the abstraction of the underlying hardware from the application code.
In addition, the evolution of operating systems hel ped shift the design of software applications from large,
monolithic applications to more modular, interconnected applications that could run on top of the operating
system environment.

Over the years, many versions of operating systems evolved. These ranged from general-purpose operating
systems (GPOS), such as UNIX and Microsoft Windows, to smaller and more compact real-time operating
systems, such as VxWorks. Each is briefly discussed next.

In the 60s and 70s, when mid-sized and mainframe computing was in its prime, UNIX was developed to
facilitate multi-user access to expensive, limited-availability computing systems. UNIX alowed many users
performing avariety of tasksto share these large and costly computers. multi-user access was very efficient:
one user could print files, for example, while another wrote programs. Eventually, UNIX was ported to all
types of machines, from microcomputers to supercomputers.

In the 80s, Microsoft introduced the Windows operating system, which emphasized the persona computing
environment. Targeted for residential and business users interacting with PCs through a graphical user interface,
the Microsoft Windows operating system helped drive the persona -computing era.

Later in the decade, momentum started building for the next generation of computing: the post-PC,
embedded-computing era. To meet the needs of embedded computing, commercial RTOSes, such as VxWorks,
were developed. Although some functional similarities exist between RTOSes and GPOSes, many important
differences occur as well. These differences help explain why RTOSes are better suited for real-time
embedded systems.

Some core functional similarities between atypical RTOS and GPOS include:

some level of multitasking,

software and hardware resource management,

provision of underlying OS services to applications, and

abstracting the hardware from the software application.

On the other hand, some key functional differences that set RTOSes apart from GPOSes include:

better reliability in embedded application contexts,



the ability to scale up or down to meet application needs,

faster performance,

reduced memory regquirements,

scheduling policiestailored for real-time embedded systems,

support for diskless embedded systems by allowing executables to boot and run from ROM or RAM, and

better portability to different hardware platforms.

Today, GPOSes target general-purpose computing and run predominantly on systems such as personal
computers, workstations, and mainframes. In some cases, GPOSes run on embedded devices that have ample
memory and very soft real-time requirements. GPOSes typically require alot more memory, however, and are
not well suited to real-time embedded devices with limited memory and high performance requirements.

RTOSes, on the other hand, can meet these requirements. They are reliable, compact, and scalable, and they
perform well in real-time embedded systems. In addition, RTOSes can be easily tailored to use only those
components required for a particular application.

Again, remember that today many smaller embedded devices are still built without an RTOS. These simple
devicestypically contain a small-to-moderate amount of application code. The focus of this book, however,
remains on embedded devices that use an RTOS.




4.3 Defining an RTOS

A real-time operating system (RTOS) is a program that schedules execution in atimely manner, manages system
resources, and provides a consistent foundation for devel oping application code. Application code designed on
an RTOS can be quite diverse, ranging from asimple application for adigital stopwatch to a much more
complex application for aircraft navigation. Good RTOSes, therefore, are scalable in order to meet different
sets of requirements for different applications.

For example, in some applications, an RTOS comprises only akernel, which is the core supervisory software
that provides minimal logic, scheduling, and resource-management algorithms. Every RTOS has akernel. On
the other hand, an RTOS can be a combination of various modules, including the kernel, afile system,
networking protocol stacks, and other components required for a particular application, asillustrated at a high
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Figure 4.1: High-level view of an RTOS, its kernel, and other components found in embedded systems.

Although many RTOSes can scale up or down to meet application requirements, this book focuses on the
common element at the heart of all RTOSes-the kernel. Most RTOS kernels contain the following components:

Scheduler -is contained within each kernel and follows a set of algorithms that determines which task
executes when. Some common examples of scheduling algorithmsinclude round-robin and preemptive
scheduling.

Objects-are special kernel constructs that help developers create applications for real-time embedded
systems. Common kernel objects include tasks, semaphores, and message queues.

Services-are operations that the kernel performs on an object or, generally operations such astiming,
interrupt handling, and resource management.

Figure 4.2 illustrates these components, each of which is described next.
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Figure 4.2: Common components in an RTOS kernel that including objects, the scheduler, and some services.

Thisdiagram is highly simplified; remember that not all RTOS kernels conform to this exact set of objects,
scheduling algorithms, and services.




4.4 The Scheduler

The scheduler is at the heart of every kernel. A scheduler provides the a gorithms needed to determine which
task executes when. To understand how scheduling works, this section describes the following topics:

schedulable entities,
multitasking,
context switching,
dispatcher, and

scheduling algorithms.
4.4.1 Schedulable Entities

A schedulable entity isakernel object that can compete for execution time on a system, based on a predefined
scheduling algorithm. Tasks and processes are al examples of schedulable entities found in most kernels.

A task is an independent thread of execution that contains a sequence of independently schedulable instructions.
Some kernels provide another type of a schedulable object called a process. Processes are similar to tasksin
that they can independently compete for CPU execution time. Processes differ from tasks in that they provide
better memory protection features, at the expense of performance and memory overhead. Despite these
differences, for the sake of simplicity, this book uses task to mean either atask or a process.

Note that message queues and semaphores are not schedulable entities. These items are inter-task
communication objects used for synchronization and communication. Chapter 6 discusses semaphores, and
Chapter 7 discusses message queues in more detail.

So, how exactly does a scheduler handle multiple schedulable entities that need to run ssmultaneously? The

answer is by multitasking. The multitasking discussions are carried out in the context of uniprocessor
environments.

4.4.2 Multitasking

Multitasking isthe ability of the operating system to handle multiple activities within set deadlines. A real-time
kernel might have multiple tasks that it has to schedule to run. One such multitasking scenario isillustrated in
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Figure 4.3: Multitasking using a context switch.

In this scenario, the kernel multitasks in such away that many threads of execution appear to be running
concurrently; however, the kernel is actually interleaving executions sequentially, based on a preset scheduling
agorithm (see Scheduling Algorithms on page 59). The scheduler must ensure that the appropriate task runs at
theright time.

An important point to note here isthat the tasks follow the kernel s scheduling algorithm, while interrupt service
routines (I1SR) are triggered to run because of hardware interrupts and their established priorities.

As the number of tasksto schedule increases, so do CPU performance requirements. Thisfact is due to
increased switching between the contexts of the different threads of execution.

4.4.3 The Context Switch

Each task hasits own context, which isthe state of the CPU registers required each timeit is scheduled to run.
A context switch occurs when the scheduler switches from one task to another. To better understand what
happens during a context switch, let s examine further what atypical kernel doesin this scenario.

Every time anew task is created, the kernel aso creates and maintains an associated task control block (TCB).
TCBs are system data structures that the kernel uses to maintain task-specific information. TCBs contain
everything akernel needs to know about a particular task. When atask is running, its context is highly dynamic.
This dynamic context is maintained in the TCB. When the task is not running, its context is frozen within the
TCB, to be restored the next time the task runs. A typical context switch scenarioisillustrated in Figure 4.3.

Asshown in Figure 4.3, when the kernel s scheduler determinesthat it needs to stop running task 1 and start
running task 2, it takes the following steps:
1.

The kerndl savestask 1 s context informationin its TCB.
2.

It loads task 2 s context information from its TCB, which becomes the current thread of execution.
3.

The context of task 1 isfrozen whiletask 2 executes, but if the scheduler needsto run task 1 again, task 1



continues from where it left off just before the context switch.

Thetime it takes for the scheduler to switch from one task to another isthe context switch time. It is relatively
insignificant compared to most operations that atask performs. If an application s design includes frequent
context switching, however, the application can incur unnecessary performance overhead. Therefore, design
applicationsin away that does not involve excess context switching.

Every time an application makes a system call, the scheduler has an opportunity to determineif it needsto
switch contexts. When the scheduler determines a context switch is necessary, it relies on an associated module,
called the dispatcher, to make that switch happen.

4.4.4 The Dispatcher

The dispatcher isthe part of the scheduler that performs context switching and changes the flow of execution. At
any time an RTOS is running, the flow of execution, also known as flow of control, is passing through one of
three areas. through an application task, through an ISR, or through the kernel. When atask or ISR makesa
system call, the flow of control passesto the kernel to execute one of the system routines provided by the
kernel. When it istime to leave the kernel, the dispatcher is responsible for passing control to one of the tasksin
the user s application. It will not necessarily be the same task that made the system call. It is the scheduling
algorithms (to be discussed shortly) of the scheduler that determines which task executes next. It isthe
dispatcher that does the actual work of context switching and passing execution control.

Depending on how the kernel isfirst entered, dispatching can happen differently. When atask makes system
calls, the dispatcher is used to exit the kernel after every system call completes. In this case, the dispatcher is
used on acall-by-call basis so that it can coordinate task-state transitions that any of the system calls might have
caused. (One or more tasks may have become ready to run, for example.)

On the other hand, if an ISR makes system calls, the dispatcher is bypassed until the ISR fully completesits
execution. This processistrue even if some resources have been freed that would normally trigger a context
switch between tasks. These context switches do not take place because the ISR must complete without being
interrupted by tasks. After the ISR completes execution, the kernel exits through the dispatcher so that it can then
dispatch the correct task.

4.4.5 Scheduling Algorithms

As mentioned earlier, the scheduler determines which task runs by following a scheduling algorithm (also
known as scheduling policy). Most kernels today support two common scheduling algorithms:

preemptive priority-based scheduling, and

round-robin scheduling.
The RTOS manufacturer typically predefines these algorithms; however, in some cases, developers can create
and define their own scheduling algorithms. Each algorithm is described next.
Preemptive Priority-Based Scheduling
Of the two scheduling algorithms introduced here, most real-time kernels use preemptive priority-based

scheduling by default. As shown in Figure 4.4 with this type of scheduling, the task that getsto run at any point
isthe task with the highest priority among all other tasks ready to run in the system.
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Figure 4.4 Preemptive priority-based scheduling.

Real-time kernels generally support 256 priority levels, in which 0 is the highest and 255 the lowest. Some
kernels appoint the prioritiesin reverse order, where 255 is the highest and 0 the lowest. Regardless, the
concepts are basically the same. With a preemptive priority-based scheduler, each task has a priority, and the
highest-priority task runsfirst. If atask with a priority higher than the current task becomes ready to run, the
kernel immediately saves the current task s context in its TCB and switches to the higher-priority task. As
shown in Figure 4.4 task 1 is preempted by higher-priority task 2, which isthen preempted by task 3. When task
3 completes, task 2 resumes; likewise, when task 2 completes, task 1 resumes.

Although tasks are assigned a priority when they are created, atask s priority can be changed dynamically using
kernel-provided calls. The ability to change task priorities dynamically allows an embedded application the
flexibility to adjust to externa events as they occur, creating a true real-time, responsive system. Note,
however, that misuse of this capability can lead to priority inversions, deadlock, and eventual system failure.

Round-Robin Scheduling

Round-robin scheduling provides each task an equal share of the CPU execution time. Pure round-robin
scheduling cannot satisfy real-time system requirements because in real-time systems, tasks perform work of
varying degrees of importance. Instead, preemptive, priority-based scheduling can be augmented with
round-robin scheduling which uses time dicing to achieve equal allocation of the CPU for tasks of the same
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priority as shown in Figure 4.5. Time
Figure 4.5: Round-robin and preemptive scheduling.

With time dlicing, each task executes for a defined interval, or time dice, in an ongoing cycle, which isthe
round robin. A run-time counter tracks the time dice for each task, incrementing on every clock tick. When one
task stime slice completes, the counter is cleared, and the task is placed at the end of the cycle. Newly added
tasks of the same priority are placed at the end of the cycle, with their run-time countersinitialized to 0.

If atask in around-robin cycleis preempted by ahigher-priority task, its run-time count is saved and then
restored when the interrupted task is again eligible for execution. Thisideaisillustrated in Figure 4.5, in which
task 1 is preempted by a higher-priority task 4 but resumes where it |eft off when task 4 completes.




4.5 Objects

Kernel objects are special constructs that are the building blocks for application development for real-time
embedded systems. The most common RTOS kerndl objects are

Tasks are concurrent and independent threads of execution that can compete for CPU execution time.

Semaphores are token-like objects that can be incremented or decremented by tasks for synchronization or
mutual exclusion.

Message Queues are buffer-like data structures that can be used for synchronization, mutual exclusion,
and data exchange by passing messages between tasks. Devel opers creating real-time embedded
applications can combine these basic kernel objects (aswell as others not mentioned here) to solve
common real-time design problems, such as concurrency, activity synchronization, and data
communication. These design problems and the kernel objects used to solve them are discussed in more
detail in later chapters.




4.6 Services

Along with objects, most kernels provide services that help devel opers create applications for real-time
embedded systems. These services comprise sets of API calls that can be used to perform operations on kernel
objects or can be used in generd to facilitate timer management, interrupt handling, device 1/0, and memory
management. Again, other services might be provided; these services are those most commonly found in RTOS
kernels.




4.7 Key Characteristics of an RTOS

An application's requirements define the requirements of its underlying RTOS. Some of the more common
attributes are

reliability,
predictability,
performance,
compactness, and

scalability.

These attributes are discussed next; however, the RTOS attribute an application needs depends on the type of
application being built.

4.7.1 Reliability

Embedded systems must be reliable. Depending on the application, the system might need to operate for long
periods without human intervention.

Different degrees of reliability may be required. For example, adigital solar-powered calculator might reset
itself if it does not get enough light, yet the calculator might till be considered acceptable. On the other hand, a
telecom switch cannot reset during operation without incurring high associated costs for down time. The
RTOSes in these applications require different degrees of reliability.

Although different degrees of reliability might be acceptable, in general, areliable system isonethat is
available (continues to provide service) and does not fail. A common way that developers categorize highly
reliable systemsis by quantifying their downtime per year, as shown in Table 4.1. The percentages under the
'‘Number of 9s column indicate the percent of the total time that a system must be available.

While RTOSes must be reliable, note that the RTOS by itself is not what is measured to determine system
reliability. It isthe combination of all system elements-including the hardware, BSP, RTOS, and
application-that determines the reliability of a system.

Table 4.1 Categorizing highly available systems by allowable downtime.1

Number of 9s Downtime per year Typical application

3 Nines (99.9%) ~9 hours Desktop

4 Nines (99.99%) ~1 hour Enterprise Server




5 Nines (99.999%) ~5 minutes Carrier-Class Server

6 Nines (99.9999%) ~31 seconds Carrier Switch Equipment

1 Source: 'Providing Open Architecture High Availability Solutions,” Revision 1.0, Published by HA Forum,
February 2001.

4.7.2 Predictability

Because many embedded systems are also real-time systems, meeting time requirementsis key to ensuring
proper operation. The RTOS used in this case needs to be predictable to a certain degree. The term
deterministic describes RTOSes with predictable behavior, in which the completion of operating system calls
occurs within known timeframes.

Developers can write ssimple benchmark programs to validate the determinism of an RTOS. The result is based
on timed responses to specific RTOS calls. In agood deterministic RTOS, the variance of the response times
for each type of system call isvery small.

4.7.3 Performance

This requirement dictates that an embedded system must perform fast enough to fulfill its timing requirements.
Typically, the more deadlines to be met-and the shorter the time between them-the faster the system’'s CPU must
be. Although underlying hardware can dictate a system's processing power, its software can aso contribute to
system performance. Typically, the processor's performance is expressed in million instructions per second
(MIPS).

Throughput also measures the overall performance of a system, with hardware and software combined. One
definition of throughput isthe rate at which a system can generate output based on the inputs coming in.
Throughput also means the amount of data transferred divided by the time taken to transfer it. Data transfer
throughput is typically measured in multiples of bits per second (bps).

Sometimes devel opers measure RTOS performance on a call-by-call basis. Benchmarks are written by
producing timestamps when a system call starts and when it completes. Although this step can be helpful in the
analysis stages of design, true performance testing is achieved only when the system performance is measured
asawhole.

4.7.4 Compactness

Application design constraints and cost constraints help determine how compact an embedded system can be.
For example, a cell phone clearly must be small, portable, and low cost. These design requirements limit
system memory, which in turn limits the size of the application and operating system.

In such embedded systems, where hardware real estate is limited due to size and costs, the RTOS clearly must
be small and efficient. In these cases, the RTOS memory footprint can be an important factor. To meet total
system requirements, designers must understand both the static and dynamic memory consumption of the RTOS
and the application that will run onit.

4.7.5 Scal ability



Because RTOSes can be used in awide variety of embedded systems, they must be able to scale up or down to
meet application-specific requirements. Depending on how much functionality is required, an RTOS should be
capable of adding or deleting modular components, including file systems and protocol stacks.

If an RTOS does not scale up well, development teams might have to buy or build the missing pieces. Suppose
that a devel opment team wants to use an RTOS for the design of a cellular phone project and a base station
project. If an RTOS scales well, the same RTOS can be used in both projects, instead of two different RTOSes,
which saves considerable time and money.




4.8 Pointsto Remember

Some points to remember include the following:

RTOSes are best suited for real-time, application-specific embedded systems; GPOSes are typically used
for general-purpose systems.

RTOSes are programs that schedule execution in atimely manner, manage system resources, and provide
a consistent foundation for developing application code.

Kernels are the core module of every RTOS and typically contain kernel objects, services, and scheduler.

Kernels can deploy different algorithms for task scheduling. The most common two algorithms are
preemptive priority-based scheduling and round-robin scheduling.

RTOSes for real-time embedded systems should be reliable, predictable, high performance, compact, and
scalable.




Chapter 5. Tasks

5.1 Introduction

Simple software applications are typically designed to run sequentially , oneinstruction at atime, ina
pre-determined chain of instructions. However, this scheme is inappropriate for real-time embedded
applications, which generally handle multiple inputs and outputs within tight time constraints. Real-time
embedded software applications must be designed for concurrency.

Concurrent design requires developers to decompose an application into small, schedul able, and sequential
program units. When done correctly, concurrent design allows system multitasking to meet performance and
timing requirements for areal-time system. Most RTOS kernels provide task objects and task management
services to facilitate designing concurrency within an application.

This chapter discusses the following topics:
task definition,
task states and scheduling,
typical task operations,

typical task structure, and

task coordination and concurrency.




5.2 Defining a Task

A task is an independent thread of execution that can compete with other concurrent tasks for processor
execution time. As mentioned earlier, devel opers decompose applications into multiple concurrent tasksto
optimize the handling of inputs and outputs within set time constraints.

A task is schedulable. As Chapter 4 discusses, the task is able to compete for execution time on a system, based
on a predefined scheduling algorithm. A task is defined by its distinct set of parameters and supporting data
structures. Specifically, upon creation, each task has an associated name, aunique ID, apriority (if part of a
preemptive scheduling plan), atask control block (TCB), a stack, and atask routine, as shown in Figure 5.1).
Tquether, these components mﬂ(beckup what is known as the task object.

sk Control Block

TCB ' STACK
| Highast
Task —  Priceity
Mame! ID Level
-
——tieint iMyTask()
Task — i (
Routine while (1) | Task
PIOE(:) ——»] 130 Priority
}
}

Figure 5.1: A task, its associated parameters, and supporting data structures.

When the kernel first starts, it creates its own set of system tasks and allocates the appropriate priority for each
from aset of reserved priority levels. The reserved priority levels refer to the priorities used internally by the
RTOSfor its system tasks. An application should avoid using these priority levelsfor its tasks because running
application tasks at such level may affect the overall system performance or behavior. For most RTOSes, these
reserved priorities are not enforced. The kernel needs its system tasks and their reserved priority levelsto
operate. These priorities should not be modified. Examples of system tasks include:

initialization or startup task initializes the system and creates and starts system tasks,

idletask uses up processor idle cycles when no other activity is present,

logging task logs system messages,

exception-handling task handles exceptions, and

debug agent task allows debugging with a host debugger. Note that other system tasks might be created
during initialization, depending on what other components are included with the kernel.

Theidletask, whichis created at kernel startup, is one system task that bears mention and should not be
ignored. Theidletask is set to the lowest priority, typically executesin an endless loop, and runs when either
no other task can run or when no other tasks exist, for the sole purpose of using idle processor cycles. Theidle
task is necessary because the processor executes the instruction to which the program counter register points



whileit is running. Unless the processor can be suspended, the program counter must still point to valid
instructions even when no tasks exist in the system or when no tasks can run. Therefore, the idle task ensures the
processor program counter is always valid when no other tasks are running.

In some cases, however, the kernel might allow a user-configured routine to run instead of the idle task in order
to implement special requirements for a particular application. One example of a specia requirement is power
conservation. When no other tasks can run, the kernel can switch control to the user-supplied routine instead of
to theidletask. In this case, the user-supplied routine acts like the idle task but instead initiates power
conservation code, such as system suspension, after a period of idle time.

After the kernel hasinitialized and created all of the required tasks, the kernel jumps to a predefined entry point
(such as a predefined function) that serves, in effect, as the beginning of the application. From the entry point,
the developer can initialize and create other application tasks , as well as other kernel objects, which the
application design might require.

Asthe developer creates new tasks, the developer must assign each atask name, priority, stack size, and atask
routine. The kernel does the rest by assigning each task a unique ID and creating an associated TCB and stack
space in memory for it.




5.3 Task States and Scheduling

Whether it's a system task or an application task, at any time each task exists in one of asmall number of states,
including ready, running, or blocked. As the real-time embedded system runs, each task moves from one state to
another, according to the logic of asmple finite state machine (FSM). Fi qu’re$§l|| lustrates atypical FSM for
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Figure 5.2: A typical finite state machine for task execution states.

Although kernels can define task-state groupings differently, generaly three main states are used in most typical
preemptive-scheduling kernels, including:

ready state-the task is ready to run but cannot because a higher priority task is executing.

blocked state-the task has requested aresource that is not available, has requested to wait until some
event occurs, or has delayed itself for some duration.

running state-the task is the highest priority task and is running.

Note some commercial kernels, such as the VxWorks kernel, define other, more granular states, such as
suspended, pended, and delayed. In this case, pended and delayed are actually sub-states of the blocked state. A
pended task iswaiting for aresource that it needsto be freed; a delayed task iswaiting for atiming delay to
end. The suspended state exists for debugging purposes. For more detailed information on the way a particular
RTOS kernel implementsits FSM for each task, refer to the kernel's user manual.

Regardless of how akernel implements atask's FSM, it must maintain the current state of all tasksin arunning
system. As calls are made into the kernel by executing tasks, the kernel's scheduler first determines which tasks
need to change states and then makes those changes.

In some cases, the kernel changes the states of some tasks, but no context switching occurs because the state of
the highest priority task is unaffected. In other cases, however, these state changes result in a context switch
because the former highest priority task either gets blocked or is no longer the highest priority task. When this
process happens, the former running task is put into the blocked or ready state, and the new highest priority task
starts to execute.

The following describe the ready, running, and blocked states in more detail. These descriptions are based on a
single-processor system and a kernel using a priority-based preemptive scheduling algorithm.

5.3.1 Ready State



When atask isfirst created and made ready to run, the kernel putsit into the ready state. In this state, the task
actively competes with all other ready tasks for the processor's execution time. As Figure 5.2 shows, tasksin
the ready state cannot move directly to the blocked state. A task first needs to run so it can make a blocking call
, whichisacall to afunction that cannot immediately run to completion, thus putting the task in the blocked
state. Ready tasks, therefore, can only move to the running state. Because many tasks might be in the ready state,
the kerndl's scheduler uses the priority of each task to determine which task to move to the running state.

For akernel that supports only one task per priority level, the scheduling algorithm is straightforward-the
highest priority task that is ready runs next. In thisimplementation, the kernel limits the number of tasksin an
application to the number of priority levels.

However, most kernels support more than one task per priority level, allowing many more tasksin an
application. In this case, the scheduling algorithm is more complicated and involves maintaining a task-ready
list . Some kernels maintain a separate task-ready list for each priority level; others have one combined list.

Figure 5.3 illustrates, in afive-step scenario, how akernel scheduler might use a task-ready list to move tasks
from the ready state to the running state. This example assumes a single-processor system and a priority-based
preemptive scheduling agorithm in which 255 is the lowest priority and O is the highest. Note that for
simplicity this example does not show system tasks, such astheidle task.
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Figure 5.3: Five steps showing the way a task-ready list works.

In thisexample, tasks 1, 2, 3, 4, and 5 are ready to run, and the kernel queues them by priority in atask-ready
list. Task 1 isthe highest priority task (70); tasks 2, 3, and 4 are at the next-highest priority level (80); and task
5isthe lowest priority (90). The following steps explains how a kernel might use the task-ready list to move
tasks to and from the ready state:

1.

Tasks 1, 2, 3, 4, and 5 are ready to run and are waiting in the task-ready list.
2.

Because task 1 has the highest priority (70), it isthefirst task ready to run. If nothing higher is running, the
kernel removestask 1 from the ready list and movesit to the running state.
3.

During execution, task 1 makes ablocking call. As aresult, the kernel movestask 1 to the blocked state;
takestask 2, which isfirst in thelist of the next-highest priority tasks (80), off the ready list; and moves
task 2 to the running state.

4,



Next, task 2 makes ablocking call. The kernel moves task 2 to the blocked state; takestask 3, whichis
next in line of the priority 80 tasks, off the ready list; and moves task 3 to the running state.

Astask 3 runs, frees the resource that task 2 requested. The kernel returns task 2 to the ready state and
insertsit at the end of the list of tasks ready to run at priority level 80. Task 3 continues as the currently
running task.

Although not illustrated here, if task 1 became unblocked at this point in the scenario, the kernel would move
task 1 to the running state because its priority is higher than the currently running task (task 3). Aswith task 2
earlier, task 3 at this point would be moved to the ready state and inserted after task 2 (same priority of 80) and
before task 5 (next priority of 90).

5.3.2 Running State

On asingle-processor system, only one task can run at atime. In this case, when atask is moved to the running
state, the processor loads its registers with this task's context. The processor can then execute the task's
instructions and manipul ate the associated stack.

Asdiscussed in the previous section, atask can move back to the ready state while it is running. When a task
moves from the running state to the ready state, it is preempted by a higher priority task. In this case, the
preempted task is put in the appropriate, priority-based location in the task-ready list, and the higher priority
task is moved from the ready state to the running state.

Unlike aready task, arunning task can move to the blocked state in any of the following ways:

by making a call that requests an unavailable resource,

by making a call that requests to wait for an event to occur, and

by making acall to delay the task for some duration.

In each of these cases, the task is moved from the running state to the blocked state, as described next.

5.3.3 Blocked State

The possibility of blocked statesis extremely important in real-time systems because without blocked states,
lower priority tasks could not run. If higher priority tasks are not designed to block, CPU starvation can result.

CPU starvation occurs when higher priority tasks use al of the CPU execution time and lower priority tasks do
not get to run.

A task can only move to the blocked state by making a blocking call, requesting that some blocking condition be
met. A blocked task remains blocked until the blocking condition is met. (It probably ought to be called the un
blocking condition, but blocking is the terminology in common use among real-time programmers.) Examples of
how blocking conditions are met include the following:

a semaphore token (described later) for which atask iswaiting is released,



amessage, on which the task is waiting, arrivesin a message queue, or

atime delay imposed on the task expires.

When atask becomes unblocked, the task might move from the blocked state to the ready state if it is not the

highest priority task. The task is then put into the task-ready list at the appropriate priority-based location, as
described earlier.

However, if the unblocked task is the highest priority task, the task moves directly to the running state (without
going through the ready state) and preempts the currently running task. The preempted task is then moved to the
ready state and put into the appropriate priority-based location in the task-ready list.




5.4 Typical Task Operations

In addition to providing atask object, kernels also provide task-management services . Task-management
servicesinclude the actions that a kernel performs behind the scenes to support tasks, for example, creating and
maintaining the TCB and task stacks.

A kernel, however, also provides an API that allows devel opers to manipulate tasks. Some of the more common
operations that developers can perform with atask object from within the application include:

creating and deleting tasks,

controlling task scheduling, and

obtaining task information.

Developers should learn how to perform each of these operations for the kernel selected for the project. Each
operation is briefly discussed next.

5.4.1 Task Creation and Deletion

The most fundamental operations that developers must learn are creating and deleting tasks, as shown in Table
5.1.
Table 5.1: Operations for task creation and deletion.

Operation Description
Create Creates atask
Delete Deletes atask

Developerstypicaly create atask using one or two operations, depending on the kernel s API. Some kernels
allow developersfirst to create atask and then start it. In this case, the task isfirst created and put into a
suspended state; then, the task is moved to the ready state when it is started (made ready to run).

Creating tasks in this manner might be useful for debugging or when special initialization needs to occur
between the times that atask is created and started. However, in most cases, it is sufficient to create and start a
task using one kernel call.

The suspended state is similar to the blocked state, in that the suspended task is neither running nor ready to run.
However, atask does not move into or out of the suspended state via the same operations that move atask to or
from the blocked state. The exact nature of the suspended state varies between RTOSes. For the present
purposg, it is sufficient to know that the task is not yet ready to run.

Starting atask does not make it run immediately; it puts the task on the task-ready li<t.

Many kernels also provide user-configurable hooks , which are mechanisms that execute programmer-supplied



functions, at the time of specific kernel events. The programmer registers the function with the kernel by
passing afunction pointer to a kernel-provided API . The kernel executes this function when the event of interest
occurs. Such events can include:

when atask isfirst created,

when atask is suspended for any reason and a context switch occurs, and

when atask is deleted.

Hooks are useful when executing specia initialization code upon task creation, implementing status tracking or
monitoring upon task context switches, or executing clean-up code upon task deletion.

Carefully consider how tasks are to be deleted in the embedded application. Many kernel implementations
allow any task to delete any other task. During the deletion process, akernel terminates the task and frees
memory by deleting the task s TCB and stack.

However, when tasks execute, they can acquire memory or access resources using other kernel objects. If the
task is deleted incorrectly, the task might not get to release these resources. For example, assume that a task
acquires a semaphore token to get exclusive access to a shared data structure. While the task is operating on this
data structure, the task gets deleted. If not handled appropriately, this abrupt deletion of the operating task can
result in:

acorrupt data structure, due to an incomplete write operation,

an unrel eased semaphore, which will not be available for other tasks that might need to acquireit, and

an inaccessible data structure, due to the unreleased semaphore.

Asaresult, premature deletion of atask can result in memory or resource leaks.

A memory leak occurs when memory is acquired but not released, which causes the system to run out of
memory eventually. A resource leak occurs when aresource is acquired but never released, which resultsin a
memory leak because each resource takes up space in memory. Many kernels provide task-deletion locks, a
pair of callsthat protect atask from being prematurely deleted during a critical section of code.

Thisbook discusses these concepts in more detail later. At this point, however, note that any tasks to be deleted
must have enough time to clean up and release resources or memory before being del eted.

5.4.2 Task Scheduling

From the time atask is created to the time it is deleted, the task can move through various states resulting from
program execution and kernel scheduling. Although much of this state changing is automatic, many kernels
provide a set of APl callsthat allow developersto control when atask movesto a different state, as shown in
Table5.2. This capability is called manual scheduling .

Table 5.2: Operations for task scheduling.



Operation Description

Suspend Suspends atask

Resume Resumes atask

Delay Delays atask

Restart Restarts a task

Get Priority Gets the current task s priority

Set Priority Dynamically setsatask spriority

Preemption lock Locks out higher priority tasks from preempting the current task
Preemption unlock Unlocks a preemption lock

Using manual scheduling, developers can suspend and resume tasks from within an application. Doing so might
be important for debugging purposes or, as discussed earlier, for suspending a high-priority task so that lower
priority tasks can execute.

A developer might want to delay (block) atask, for example, to alow manual scheduling or to wait for an
external condition that does not have an associated interrupt. Delaying atask causesit to relinquish the CPU and
allow another task to execute. After the delay expires, the task is returned to the task-ready list after al other
ready tasks at its priority level. A delayed task waiting for an external condition can wake up after a set timeto
check whether a specified condition or event has occurred, which is called polling.

A developer might also want to restart atask, which is not the same as resuming a suspended task. Restarting a
task beginsthe task asif it had not been previoudly executing. The internal state the task possessed at the time it
was suspended (for example, the CPU registers used and the resources acquired) islost when atask is
restarted. By contrast, resuming atask begins the task in the sameinterna state it possessed when it was
suspended.

Restarting atask is useful during debugging or when reinitializing atask after a catastrophic error. During
debugging, adeveloper can restart atask to step through its code again from start to finish. In the case of
catastrophic error, the devel oper can restart atask and ensure that the system continues to operate without
having to be completely reinitialized.

Getting and setting atask s priority during execution lets devel opers control task scheduling manually. This
processis helpful during a priority inversion , in which alower priority task has a shared resource that a higher
priority task requires and is preempted by an unrelated medium-priority task. (Priority inversion is discussed in
more detail in Chapter 16). A simple fix for this problem isto free the shared resource by dynamically
increasing the priority of the lower priority task to that of the higher priority task allowing the task to run and
release the resource that the higher priority task requires and then decreasing the former lower priority task to
itsorigina priority.




Finally, the kernel might support preemption locks , apair of calls used to disable and enable preemption in
applications. This feature can be useful if atask isexecuting in a critical section of code : one in which the task
must not be preempted by other tasks.

5.4.3 Obtaining Task Information

Kernels provide routines that allow devel opers to access task information within their applications, as shown
in Table 5.3. Thisinformation is useful for debugging and monitoring.
Table 5.3 Task-information operations.

Operation Description
Get ID Get the current task sID
Get TCB Get the current task s TCB

One useisto obtain a particular task s 1D, which is used to get more information about the task by getting its
TCB. Obtaining a TCB, however, only takes a snapshot of the task context. If atask isnot dormant (e.g.,
suspended), its context might be dynamic, and the snapshot information might change by the timeiit is used.
Hence, use this functionality wisdly, so that decisions aren t made in the application based on querying a
constantly changing task context.




5.5 Typical Task Structure

When writing code for tasks, tasks are structured in one of two ways:

run to completion, or

endless |oop.

Both task structures are relatively ssmple. Run-to-compl etion tasks are most useful for initialization and startup.
They typically run once, when the system first powers on. Endless-loop tasks do the mgjority of the work in the
application by handling inputs and outputs. Typically, they run many times while the system is powered on.

5.5.1 Run-to-Completion Tasks

An example of arun-to-completion task is the application-level initialization task, shownin Listing 5.1. The
initialization task initializes the application and creates additional services, tasks, and needed kernel objects.

Listing 5.1: Pseudo code for a run-to-completion task.

Conpl eti onTask ()

Initialize application
Create endless |oop tasks
Create kernel objects

Del ete or suspend this task

e application initialization task typically has a higher priority than the application tasks it creates so that its
initialization work is not preempted. In the simplest case, the other tasks are one or more lower priority
endless-loop tasks. The application initialization task is written so that it suspends or deletes itself after it
completes its work so the newly created tasks can run.

5.5.2 Endless-Loop Tasks

Aswith the structure of the application initialization task, the structure of an endless loop task can also contain
initialization code. The endless loop's initiaization code, however, only needs to be executed when the task
first runs, after which the task executesin an endless loop, as shown in Listing 5.2.

The critical part of the design of an endless-loop task is the one or more blocking calls within the body of the
loop. These blocking calls can result in the blocking of this endless-loop task, alowing lower priority tasksto
run.

Listing 5.2: Pseudo code for an endless-loop task.

ssLoopTask ()

Initialization code
Loop Forever

{
Body of | oop



Make one or nore blocking calls




5.6 Synchronization, Communication, and
Concurrency

Tasks synchronize and communicate amongst themselves by using intertask primitives , which are kernel
objects that facilitate synchronization and communication between two or more threads of execution. Examples
of such objects include semaphores, message queues, signals, and pipes, as well as other types of objects. Each
of theseis discussed in detail in later chapters of this book.

The concept of concurrency and how an application is optimally decomposed into concurrent tasksis also
discussed in more detail later in this book. For now, remember that the task object is the fundamental construct
of most kernels. Tasks, along with task-management services, allow devel opers to design applications for
concurrency to meet multiple time constraints and to address various design problems inherent to real-time
embedded applications.




5.7 Pointsto Remember

Some points to remember include the following:

Most real-time kernels provide task objects and task-management services that allow devel opers to meet
the requirements of real-time applications.

Applications can contain system tasks or user-created tasks, each of which hasaname, aunique ID, a
priority, atask control block (TCB), a stack, and atask routine.

A real-time application is composed of multiple concurrent tasks that are independent threads of
execution, competing on their own for processor execution time.

Tasks can be in one of three primary states during their lifetime: ready, running, and blocked.

Priority-based, preemptive scheduling kernels that allow multiple tasks to be assigned to the same
priority use task-ready lists to help scheduled tasks run.

Tasks can run to completion or can run in an endless loop. For tasks that run in endless loops, structure
the code so that the task blocks, which alows lower priority tasksto run.

Typical task operations that kernels provide for application devel opment include task creation and
deletion, manual task scheduling, and dynamic acquisition of task information.




Chapter 6. Semaphores

6.1 Introduction

Multiple concurrent threads of execution within an application must be able to synchronize their execution and
coordinate mutually exclusive access to shared resources. To address these requirements, RTOS kernels
provide a semaphore object and associated semaphore management services.

This chapter discusses the following:

defining a semaphore,

typical semaphore operations, and

common semaphore use.




6.2 Defining Semaphores

A semaphore (sometimes called a semaphor e token) is akernel object that one or more threads of execution
can acquire or release for the purposes of synchronization or mutual exclusion.

When a semaphoreisfirst created, the kernel assignsto it an associated semaphore control block (SCB), a
unique 1D, avalue (binary or acount), and atask-waiting list, as shown in Figure 6.1.
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Figure 6.1: A semaphore, its associated parameters, and supporting data structures.

A semaphore islike akey that allows atask to carry out some operation or to access aresource. If the task can
acquire the semaphore, it can carry out the intended operation or access the resource. A single semaphore can
be acquired afinite number of times. In this sense, acquiring a semaphore is like acquiring the duplicate of a
key from an apartment manager when the apartment manager runs out of duplicates, the manager can give out no
more keys. Likewise, when a semaphore slimit is reached, it can no longer be acquired until someone givesa
key back or releases the semaphore.

The kernel tracks the number of times a semaphore has been acquired or released by maintaining a token count,
which isinitialized to a value when the semaphore is created. As atask acquires the semaphore, the token count
is decremented; as a task rel eases the semaphore, the count is incremented.

If the token count reaches 0, the semaphore has no tokens left. A requesting task, therefore, cannot acquire the
semaphore, and the task blocksiif it chooses to wait for the semaphore to become available. (This chapter
discusses states of different semaphore variants and blocking in more detail in "Typical Semaphore Operations'

on page 84, section 6.3.)

The task-waiting list tracks all tasks blocked while waiting on an unavailable semaphore. These blocked tasks
are kept in the task-waiting list in either first in/first out (FIFO) order or highest priority first order.

When an unavailable semaphore becomes available, the kernel allowsthe first task in the task-waiting list to
acquire it. The kernel moves this unblocked task either to the running state, if it isthe highest priority task, or to
the ready state, until it becomes the highest priority task and is able to run. Note that the exact implementation of
atask-waiting list can vary from one kernel to another.

A kernel can support many different types of semaphores, including binary, counting, and mutual-exclusion
(mutex) semaphores.

6.2.1 Binary Semaphores

A binary semaphore can have avalue of either 0 or 1. When a binary semaphore svaueis 0, the semaphoreis
considered unavailable (or empty); when the valueis 1, the binary semaphore is considered available (or full
). Note that when a binary semaphoreisfirst created, it can be initialized to either available or unavailable (1



or O, respectively). The state diagram of a binary semaphoreis shown in Figure 6.2.
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Figure 6.2: The state diagram of a binary semaphore.

Binary semaphores are treated as global resources, which means they are shared among al tasks that need
them. Making the semaphore aglobal resource allows any task to release it, even if the task did not initially

acquireiit.

6.2.2 Counting Semaphores

A counting semaphore uses a count to allow it to be acquired or released multiple times. When creating a
counting semaphore, assign the semaphore a count that denotes the number of semaphore tokensit hasinitialy.
If theinitial count is O, the counting semaphore is created in the unavailable state. If the count is greater than O,
the semaphore is created in the available state, and the number of tokensit has equals its count, as shown in
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Figure 6.3: The state diagram of a counting semaphore.

One or more tasks can continue to acquire a token from the counting semaphore until no tokens are left. When al
the tokens are gone, the count equals O, and the counting semaphore moves from the available state to the
unavailable state. To move from the unavailable state back to the available state, a semaphore token must be
released by any task.

Note that, as with binary semaphores, counting semaphores are global resources that can be shared by all tasks
that need them. This feature alows any task to release a counting semaphore token. Each release operation
increments the count by one, even if the task making this call did not acquire atoken in the first place.

Some implementations of counting semaphores might allow the count to be bounded. A bounded count isa
count in which theinitial count set for the counting semaphore, determined when the semaphore was first
created, acts as the maximum count for the semaphore. An unbounded count allows the counting semaphore to
count beyond theinitial count to the maximum value that can be held by the count s datatype (e.g., an unsigned
integer or an unsigned long vaue).

6.2.3 Mutual Exclusion (M utex) Semaphores

A mutual exclusion (mutex) semaphore isaspecia binary semaphore that supports ownership, recursive
access, task deletion safety, and one or more protocols for avoiding problems inherent to mutual exclusion.
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Figure 6.4 illustrates the state diagram of a mutex. (fock count = lock count - 1)
Figure 6.4: The state diagram of amutual exclusion (mutex) semaphore.

As opposed to the available and unavailable states in binary and counting semaphores, the states of amutex are
unlocked or locked (0 or 1, respectively). A mutex isinitially created in the unlocked state, in which it can be
acquired by atask. After being acquired, the mutex moves to the locked state. Conversely, when the task
releases the mutex, the mutex returns to the unlocked state. Note that some kernels might use the terms lock and
unlock for amutex instead of acquire and release.

Depending on the implementation, a mutex can support additiona features not found in binary or counting
semaphores. These key differentiating features include ownership, recursive locking, task deletion safety, and
priority inversion avoidance protocols.

Mutex Owner ship

Ownership of amutex is gained when atask first locks the mutex by acquiring it. Conversely, atask loses
ownership of the mutex when it unlocksit by releasing it. When atask owns the mute, it is not possible for any
other task to lock or unlock that mutex. Contrast this concept with the binary semaphore, which can be released
by any task, even atask that did not originally acquire the semaphore.

Recursive L ocking

Many mutex implementations al so support recursive locking , which allows the task that owns the mutex to
acquire it multiple times in the locked state. Depending on the implementation, recursion within a mutex can be
automatically built into the mutex, or it might need to be enabled explicitly when the mutex isfirst created.

The mutex with recursive locking is called a recursive mutex . Thistype of mutex is most useful when atask
requiring exclusive access to a shared resource calls one or more routines that also require access to the same
resource. A recursive mutex allows nested attempts to lock the mutex to succeed, rather than cause deadlock ,
which is a condition in which two or more tasks are blocked and are waiting on mutually locked resources. The
problem of recursion and deadlocks is discussed later in this chapter, as well aslater in this book.

Asshown in Figure 6.4, when arecursive mutex isfirst locked, the kernel registers the task that locked it asthe
owner of the mutex. On successive attempts, the kernel uses an internal lock count associated with the mutex to
track the number of times that the task currently owning the mutex has recursively acquired it. To properly
unlock the mutex, it must be rel eased the same number of times.

In thisexample, alock count tracks the two states of a mutex (O for unlocked and 1 for locked), as well asthe
number of timesit has been recursively locked (lock count > 1). In other implementations, a mutex might
maintain two counts: a binary value to track its state, and a separate lock count to track the number of timesit
has been acquired in the lock state by the task that ownsit.

Do not confuse the counting facility for alocked mutex with the counting facility for a counting semaphore. The
count used for the mutex tracks the number of times that the task owning the mutex has locked or unlocked the
mutex. The count used for the counting semaphore tracks the number of tokens that have been acquired or
released by any task. Additionally, the count for the mutex is always unbounded, which alows multiple
recursive accesses.



Task Deletion Safety

Some mutex implementations also have built-in task deletion safety. Premature task deletion is avoided by
using task deletion locks when atask locks and unlocks a mutex. Enabling this capability within a mutex
ensures that while atask owns the mutex, the task cannot be deleted. Typically protection from premature
deletion is enabled by setting the appropriate initialization options when creating the mutex.

Priority Inversion Avoidance

Priority inversion commonly happensin poorly designed real-time embedded applications. Priority inversion
occurs when a higher priority task is blocked and is waiting for aresource being used by alower priority task,
which hasitself been preempted by an unrelated medium-priority task. In this situation, the higher priority task s
priority level has effectively been inverted to the lower priority task s level.

Enabling certain protocols that are typically built into mutexes can help avoid priority inversion. Two common
protocols used for avoiding priority inversion include:

priority inheritance protocol ensures that the priority level of the lower priority task that has acquired
the mutex israised to that of the higher priority task that has requested the mutex when inversion happens.
The priority of the raised task islowered to its original value after the task rel eases the mutex that the
higher priority task requires.

ceiling priority protocol ensures that the priority level of the task that acquires the mutex is automatically
set to the highest priority of al possible tasks that might request that mutex when it isfirst acquired until it
isreleased.

When the mutex is released, the priority of the task islowered to its origina value.

Chapter 16 discusses priority inversion and both the priority inheritance and ceiling priority protocolsin more
detail. For now, remember that a mutex supports ownership, recursive locking, task deletion safety, and priority
inversion avoidance protocols; binary and counting semaphores do not.




6.3 Typical Semaphore Operations

Typical operations that devel opers might want to perform with the semaphores in an application include:

creating and deleting semaphores,

acquiring and releasing semaphores,

clearing a semaphore s task-waiting list, and

getting semaphore information.

Each operation is discussed next.

6.3.1 Creating and Deleting Semaphores

Table 6.1 identifies the operations used to create and del ete semaphores.
Table 6.1. Semaphore creation and deletion operations.

Operation Description
Create Creates a semaphore
Delete Deletes a semaphore

Several things must be considered, however, when creating and del eting semaphores. If akernel supports
different types of semaphores, different calls might be used for creating binary, counting, and mutex
semaphores, as follows:

binary specify theinitial semaphore state and the task-waiting order.

counting specify the initial semaphore count and the task-waiting order.

mutex specify the task-waiting order and enable task deletion safety, recursion, and priority-inversion
avoidance protocols, if supported.

Semaphores can be deleted from within any task by specifying their IDs and making semaphore-deletion calls.
Deleting a semaphore is not the same as releasing it. When a semaphore is deleted, blocked tasksin its
task-waiting list are unblocked and moved either to the ready state or to the running state (if the unblocked task
has the highest priority). Any tasks, however, that try to acquire the deleted semaphore return with an error
because the semaphore no longer exists.



Additionally, do not delete a semaphore whileit isin use (e.g., acquired). This action might result in data
corruption or other serious problemsiif the semaphore is protecting a shared resource or acritical section of
code.

6.3.2 Acquiring and Releasing Semaphores

Table 6.2 identifies the operations used to acquire or rel ease semaphores.
Table 6.2: Semaphore acquire and release operations.

Operation Description
Acquire Acquire a semaphore token
Release Release a semaphore token

The operations for acquiring and releasing a semaphore might have different names, depending on the kernel:
for example, take and give , sm p and sm v, pend and post , and lock and unlock . Regardless of the name,
they all effectively acquire and release semaphores.

Tasks typically make arequest to acquire a semaphore in one of the following ways:

Wait forever task remains blocked until it is able to acquire a semaphore.

Wait with atimeout task remains blocked until it is able to acquire a semaphore or until aset interval of
time, called the timeout interval , passes. At this point, the task is removed from the semaphore s
task-waiting list and put in either the ready state or the running state.

Do not wait task makes a request to acquire a semaphore token, but, if oneis not available, the task does
not block.

Note that | SRs can also release binary and counting semaphores. Note that most kernels do not support ISRs
locking and unlocking mutexes, asit is not meaningful to do so from an ISR. It is also not meaningful to acquire
either binary or counting semaphoresinside an ISR.

Any task can release a binary or counting semaphore; however, amutex can only be released (unlocked) by the
task that first acquired (locked) it. Note that incorrectly releasing abinary or counting semaphore can result in
losing mutually exclusive accessto a shared resource or in an 1/O device malfunction.

For example, atask can gain access to a shared data structure by acquiring an associated semaphore. If a second
task accidentally releases that semaphore, this step can potentially free athird task waiting for that same
semaphore, alowing that third task to also gain access to the same data structure. Having multiple tasks trying
to modify the same data structure at the same time resultsin corrupted data.

6.3.3 Clearing Semaphore Task-Waiting Lists

To clear al tasks waiting on a semaphore task-waiting list, some kernels support a flush operation, as shown in
Table6.3.
Table 6.3: Semaphore unblock operations.



Operation Description

Flush Unblocks all tasks waiting on a semaphore

The flush operation is useful for broadcast signaling to a group of tasks. For example, a developer might design
multiple tasks to complete certain activities first and then block while trying to acquire acommon semaphore
that is made unavailable. After the last task finishes doing what it needs to, the task can execute a semaphore
flush operation on the common semaphore. This operation frees all tasks waiting in the semaphore s task
waiting list. The synchronization scenario just described is also called thread rendezvous, when multiple tasks
executions need to meet at some point in time to synchronize execution control.

6.3.4 Getting Semaphor e | nfor mation

At some point in the application design, developers need to obtain semaphore information to perform
monitoring or debugging. In these cases, use the operations shown in Table 6.4.
Table 6.4. Semaphore information operations.

Operation Description
Show info Show genera information about semaphore
Show blocked tasks Get alist of IDs of tasks that are blocked on a semaphore

These operations are relatively straightforward but should be used judiciously, as the semaphore information
might be dynamic at thetime it is requested.




6.4 Typical Semaphore Use

Semaphores are useful either for synchronizing execution of multiple tasks or for coordinating accessto a
shared resource. The following examples and general discussionsillustrate using different types of semaphores
to address common synchronization design requirements effectively, aslisted:

wait-and-signal synchronization,

multiple-task wait-and-signal synchronization,
credit-tracking synchronization,

single shared-resource-access synchronization,
recursive shared-resource-access synchronization, and

multiple shared-resource-access synchronization.

Note that, for the sake of simplicity, not all uses of semaphores are listed here. Also, later chapters of this book
contain more advanced discussions on the different ways that mutex semaphores can handle priority inversion.

6.4.1 Wait-and-Signal Synchronization

Two tasks can communicate for the purpose of synchronization without exchanging data. For example, abinary
semaphore can be used between two tasks to coordinate the transfer of execution control, as shown in Figure 6.5
tSignalTask —»| tWaitTask

Binary Semaphoare
(Initial value = 0)

Figure 6.5: Wait-and-signal synchronization between two tasks.

In this Situation, the binary semaphore isinitially unavailable (value of 0). tWaitTask has higher priority and
runsfirst. The task makes a request to acquire the semaphore but is blocked because the semaphoreis
unavailable. This step givesthe lower priority tSigna Task a chance to run; at some point, tSignal Task releases
the binary semaphore and unblocks tWaitTask. The pseudo code for this scenario isshown in Listing 6.1.
Listing 6.1: Pseudo code for wait-and-signal synchronization

Task ()

Acqui re binary senmaphore token

}

t Si gnal Task ( )



Rel ease binary senmaphore token

eCause tWaitTask's priority is higher than tSignal Task's priority, as soon as the semaphore is rel eased,
tWaitTask preempts tSignal Task and starts to execute.

6.4.2 M ultiple-Task Wait-and-Signal Synchronization

When coordinating the synchronization of more than two tasks, use the flush operation on the task-waiting list of

tWaitTask 1
tSignalTask tWaitTask 2
Binary Semaphore i
' i (Initial value = 0) WaitTask 3
abinary semaphore, as shown in Figure 6.6.

Figure 6.6: Wait-and-signal synchronization between multiple tasks.

Asin the previous case, the binary semaphore isinitialy unavailable (value of 0). The higher priority
tWaitTasks 1, 2, and 3 al do some processing; when they are done, they try to acquire the unavailable
semaphore and, as aresult, block. This action givestSignal Task a chance to complete its processing and
execute a flush command on the semaphore, effectively unblocking the three tWaitTasks, as shown in Listing 6.2.
Note that similar code is used for tWaitTask 1, 2, and 3.

Listing 6.2: Pseudo code for wait-and-signal synchronization.

Task ()

Do sone processing specific to task Acquire binary semaphore token

}

t Si gnal Task ()
{

Do sone processing Flush binary semaphore's task-waiting |ist

ecause the tWaitTasks priorities are higher than tSignal Task's priority, as soon as the semaphore is released,
one of the higher priority tWaitTasks preempts tSignal Task and starts to execute.

Note that in the wait-and-signal synchronization shown in Figure 6.6 the value of the binary semaphore after the
flush operation isimplementation dependent. Therefore, the return value of the acquire operation must be
properly checked to seeif either areturn-from-flush or an error condition has occurred.

6.4.3 Credit-Tracking Synchronization

Sometimes the rate at which the signaling task executesis higher than that of the signaled task. In this case, a
mechanism is needed to count each signaling occurrence. The counting semaphore provides just thisfacility.
With a counting semaphore, the signaling task can continue to execute and increment a count at its own pace,
while the wait task, when unblocked, executes at its own pace, as shown in Figure 6.7.
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Figure 6.7: Credit-tracking synchronization between two tasks.

Again, the counting semaphore's count is initially 0, making it unavailable. The lower priority tWaitTask triesto
acquire this semaphore but blocks until tSignal Task makes the semaphore available by performing arelease on
it. Even then, tWaitTask will waitsin the ready state until the higher priority tSignal Task eventually
relinquishes the CPU by making a blocking call or delaying itself, as shownin Listing 6.3.

Listing 6.3: Pseudo code for credit-tracking synchronization.

Task ()

Acqui re counting semaphore token

t Si gnal Task ()
{

Rel ease counting semaphore token

eCalse tSignal Task is set to a higher priority and executes at its own rate, it might increment the counting
semaphore multiple times before tWaitTask starts processing the first request. Hence, the counting semaphore
allows acredit buildup of the number of times that the tWaitTask can execute before the semaphore becomes
unavailable.

Eventually, when tSignal Task's rate of releasing the semaphore tokens slows, tWaitTask can catch up and
eventually deplete the count until the counting semaphore is empty. At this point, tWaitTask blocks again at the
counting semaphore, waiting for tSignal Task to release the semaphore again.

Note that this credit-tracking mechanism is useful if tSignal Task releases semaphoresin bursts, giving
tWaitTask the chance to catch up every oncein awhile.

Using this mechanism with an ISR that actsin asimilar way to the signaling task can be quite useful. Interrupts
have higher priorities than tasks. Hence, an interrupt's associated higher priority ISR executes when the
hardware interrupt is triggered and typically offloads some work to alower priority task waiting on a
semaphore.

6.4.4 Single Shar ed-Resour ce-Access Synchronization

One of the more common uses of semaphoresisto provide for mutually exclusive access to a shared resource.
A shared resource might be a memory location, a data structure, or an 1/0 device-essentially anything that might

e Shared |
Resource

tAccessTask 1

tAccessTask 2

Binary
Semaphore™..
access to a shared resource, as shown in Figure 6.8. (Initial value = 1)

Figure 6.8: Single shared-resource-access synchronization.



In this scenario, a binary semaphore isinitialy created in the available state (value = 1) and is used to protect
the shared resource. To access the shared resource, task 1 or 2 needsto first successfully acquire the binary
semaphore before reading from or writing to the shared resource. The pseudo code for both tAccessTask 1 and
2issimilar to Listing 6.4.

Listing 6.4: Pseudo code for tasks accessing a shared resource.

ssTask ()

Acqui re binary senmaphore token
Read or wite to shared resource
Rel ease binary senmaphore token

IS Code serializes the access to the shared resource. If tAccessTask 1 executesfirgt, it makes arequest to
acquire the semaphore and is successful because the semaphore is available. Having acquired the semaphore,
thistask is granted access to the shared resource and can read and write to it.

Meanwhile, the higher priority tAccessTask 2 wakes up and runs due to atimeout or some external event. It
tries to access the same semaphore but is blocked because tAccessTask 1 currently has accessto it. After
tAccessTask 1 releases the semaphore, tAccessTask 2 is unblocked and starts to execute.

One of the dangersto this design isthat any task can accidentally release the binary semaphore, even one that
never acquired the semaphore in the first place. If thisissue were to happen in this scenario, both tAccessTask

1 and tAccessTask 2 could end up acquiring the semaphore and reading and writing to the shared resource at the
same time, which would lead to incorrect program behavior.

To ensure that this problem does not happen, use a mutex semaphore instead. Because a mutex supports the
concept of ownership, it ensures that only the task that successfully acquired (locked) the mutex can release
(unlock) it.

6.4.5 Recur sive Shar ed-Resour ce-Access Synchronization

Sometimes a developer might want a task to access a shared resource recursively. This situation might exist if

tAccessTask cals Routine A thitt cals Routine B, and all three need access to the same shared resource, as
| thcoassTask e

Recursive™-.___
Mutex

shown in Figure 6.9.
Figure 6.9: Recursive shared- resource-access synchronization.

If a semaphore were used in this scenario, the task would end up blocking, causing a deadlock. When aroutine
is caled from atask, the routine effectively becomes a part of the task. When Routine A runs, therefore, itis
running as a part of tAccessTask. Routine A trying to acquire the semaphore is effectively the same as
tAccessTask trying to acquire the same semaphore. In this case, tAccessTask would end up blocking while
waiting for the unavailable semaphore that it already has.

One solution to this situation is to use arecursive mutex. After tAccessTask locks the mutex, the task ownsit.
Additional attempts from the task itself or from routines that it callsto lock the mutex succeed. As aresult, when
Routines A and B attempt to lock the mutex, they succeed without blocking. The pseudo code for tAccessTask,
Routine A, and Routine B are similar to Listing 6.5.

Listing 6.5: Pseudo code for recursively accessing a shared resource.

ssTask ()



Acqui re mut ex

Access shared resource
Call Routine A

Rel ease nut ex

}
Routine A ()
{
Acqui re mut ex
Access shared resource
Call Routine B
Rel ease nut ex
}
Routine B ()
{

Acqui re mut ex
Access shared resource
Rel ease nut ex

4.6 M ultiple Shar ed-Resour ce-Access Synchronization

For cases in which multiple equivalent shared resources are used, a counting semaphore comes in handy, as

tAccessTask 1 =
Shared b
Resource
tAccessTask 2 :
\ Equivalent i
Counting', Shared /
tAccessTask 3 g', ;
Semaphore®, Resource | .

shown in Figure 6.10. g et
Figure 6.10: Single shared-resource-access synchronization.

Note that this scenario does not work if the shared resources are not equivalent. The counting semaphore's count
isinitially set to the number of equivalent shared resources: in thisexample, 2. As aresult, the first two tasks
reguesting a semaphore token are successful. However, the third task ends up blocking until one of the previous
two tasks releases a semaphore token, as shown in Listing 6.6. Note that similar code is used for tAccessTask
1,2,and 3.

Listing 6.6: Pseudo code for multiple tasks accessing equivalent shared resources.

ssTask ()

Acquire a counting semaphore token
Read or Wite to shared resource
Rel ease a counting semaphore token

Swith the binary semaphores, this design can cause problems if atask releases a semaphore that it did not



originaly acquire. If the code isrelatively simple, thisissue might not be a problem. If the code is more
elaborate, however, with many tasks accessing shared devices using multiple semaphores, mutexes can provide
built-in protection in the application design.

Asshown in Figure 6.9, a separate mutex can be assigned for each shared resource. When trying to lock a
mutex, each task tries to acquire the first mutex in anon-blocking way. If unsuccessful, each task then tries to
acquire the second mutex in a blocking way.

The codeissimilar to Listing 6.7. Note that similar code is used for tAccessTask 1, 2, and 3.
Listing 6.7: Pseudo code for multiple tasks accessing equival ent shared resources using mutexes.

ssTask ()

Acquire first nutex in non-bl ocki ng way

If not successful then acquire 2nd nutex in a bl ocking way
Read or Wite to shared resource
Rel ease the acquired mutex

Sing this scenario, task 1 and 2 each is successful in locking a mutex and therefore having accessto a shared
resource. When task 3 runs, it triesto lock the first mutex in a non-blocking way (in case task 1 is done with the
mutex). If thisfirst mutex is unlocked, task 3 locksit and is granted access to the first shared resource. If the
first mutex is still locked, however, task 3 tries to acquire the second mutex, except that thistime, it would do
so in ablocking way. If the second mutex is also locked, task 3 blocks and waits for the second mutex until it is
unlocked.




6.5 Pointsto Remember

Some points to remember include the following:

Using semaphores alows multiple tasks, or ISRs to tasks, to synchronize execution to synchronize
execution or coordinate mutually exclusive access to a shared resource.

Semaphores have an associated semaphore control block (SCB), aunigue ID, a user-assigned value
(binary or a count), and atask-waiting list.

Three common types of semaphores are binary, counting, and mutua exclusion (mutex), each of which can
be acquired or released.

Binary semaphores are either available (1) or unavailable (0). Counting semaphores are also either
available (count =1) or unavailable (0). Mutexes, however, are either unlocked (0) or locked (lock count
=1).

Acquiring abinary or counting semaphore results in decrementing its value or count, except when the
semaphore svaueisalready 0. In this case, the requesting task blocksiif it chooses to wait for the
semaphore.

Releasing a binary or counting semaphore resultsin incrementing the value or count, unlessit isabinary
semaphore with avalue of 1 or abounded semaphore at its maximum count. In this case, the release of
additional semaphoresistypically ignored.

Recursive mutexes can be locked and unlocked multiple times by the task that owns them. Acquiring an
unlocked recursive mutex increments its lock count, while releasing it decrements the lock count.

Typical semaphore operations that kernels provide for application development include creating and
deleting semaphores, acquiring and releasing semaphores, flushing semaphore s task-waiting list, and
providing dynamic access to semaphore information.




Chapter 7. Message Queues

7.1 Introduction

Chapter 6 discusses activity synchronization of two or more threads of execution. Such synchronization helps
tasks cooperate in order to produce an efficient real-time system. In many cases, however, task activity
synchronization alone does not yield a sufficiently responsive application. Tasks must also be able to exchange
messages. To facilitate inter-task data communication, kernels provide a message queue object and message
gueue management services.

This chapter discusses the following:
defining message queues,
message queue states,
message queue content,

typical message queue operations, and

typical message queue use.




7.2 Defining M essage Queues

A message queue is a buffer-like object through which tasks and | SRs send and receive messages to
communicate and synchornize with data. A message queueislike a pipeline. It temporarily holds messages from
asender until theintended receiver is ready to read them. Thistemporary buffering decouples a sending and
receiving task; that is, it frees the tasks from having to send and receive messages simultaneously.

Aswith semaphore introduced in Chapter 6, a message queue has severa associated components that the kernel
uses to manage the queue. When a message queueisfirst created, it is assigned an associated queue control
block (QCB), a message queue name, aunique ID, memory buffers, aqueue length, a ma>'<ﬂi_51nw9m message length,
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Figure 7.1: A message queue, its associated parameters, and supporting data structures.

It isthe kernel sjob to assign aunique ID to amessage queue and to create its QCB and task-waiting list. The
kernel aso takes developer-supplied parameters such as the length of the queue and the maximum message
length to determine how much memory is required for the message queue. After the kernel has thisinformation,
it allocates memory for the message queue from either apool of system memory or some private memory space.

The message queue itself consists of a number of elements, each of which can hold a single message. The
elements holding the first and last messages are called the head and tail respectively. Some elements of the
gueue may be empty (not containing a message). The total number of elements (empty or not) in the queue isthe
total length of the queue . The developer specified the queue length when the queue was created.

As Figure 7.1 shows, a message queue has two associated task-waiting lists. The receiving task-waiting list
consists of tasks that wait on the queue when it is empty. The sending list consists of tasks that wait on the queue
when it isfull. Empty and full message-queue states, as well as other key concepts, are discussed in more detail
next.




7.3 Message Queue States

Aswith other kernel objects, message queues follow the logic of asimple FSM, as shown in Figure 7.2 When a
message queue isfirst created, the FSM isin the empty state. If atask attempts to receive messages from this
message queue while the queue is empty, the task blocks and, if it choosesto, is hsludb on the message queue's
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Figure 7.2: The state diagram for a message queue.

In this scenario, if another task sends a message to the message queue, the message is delivered directly to the
blocked task. The blocked task is then removed from the task-waiting list and moved to either the ready or the
running state. The message queue in this case remains empty because it has successfully delivered the message.

If another message is sent to the same message queue and no tasks are waiting in the message queue's
task-waiting list, the message queue's state becomes not empty.

As additional messages arrive at the queue, the queue eventually fills up until it has exhausted its free space. At
this point, the number of messages in the queue is equal to the queue's length, and the message queue's state
becomes full. While a message queueisin this state, any task sending messages to it will not be successful
unless some other task first requests a message from that queue, thus freeing a queue el ement.

In some kernel implementations when a task attempts to send a message to a full message queue, the sending
function returns an error code to that task. Other kernel implementations alow such atask to block, moving the
blocked task into the sending task-waiting list, which is separate from the receiving task-waiting list.
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7.4 M essage Queue Content

M essage queues can be used to send and recelve avariety of data. Some examplesinclude:

atemperature value from a sensor,
abitmap to draw on adisplay,
atext messageto print to an LCD,
akeyboard event, and

a data packet to send over the network.

Some of these messages can be quite long and may exceed the maximum message length, which is determined
when the queue is created. (Maximum message length should not be confused with total queue length, whichis
the total number of messages the queue can hold.) One way to overcome the limit on message length isto send a
pointer to the data, rather than the dataitself. Even if along message might fit into the queue, it is sometimes
better to send a pointer instead in order to improve both performance and memory utilization.

When atask sends a message to another task, the message normally is copied twice, as shown in Figure 7.3 The
first time, the message is copied when the message is sent from the sending task s memory area to the message
gueue s memory area. The second copy occurs when the message is copied from the message queue s memory
areato the receiving task s memory area.

An exception to thissituation isif the receiving task is already blocked waiting at the message queue.
Depending on akernel simplementation, the message might be copied just once in this case from the sending
task smemory areato the receiving task s memory area, bypassing the copy to the message queue s memory
area.

Because copying data can be expensive in terms of performance and memory requirements, keep copying to a
minimum in areal-time embedded system by keeping messages small or, if that is not feasible, by using a
pointer instead.




7.5 M essage Queue Storage

Different kernels store message queuesin different locations in memory. One kernel might use a system pool, in
which the messages of all queues are stored in one large shared area of memory. Ancther kernel might use
separate memory areas, called private buffers, for each message queue.

7.5.1 System Pools

Using a system pool can be advantageousif it is certain that all message queues will never befilled to capacity
at the same time. The advantage occurs because system poolstypicaly save on memory use. The downsideis
that a message queue with large messages can easily use most of the pooled memory, not leaving enough
memory for other message queues. Indications that this problem is occurring include a message queue that is not
full that starts rejecting messages sent to it or afull message queue that continues to accept more messages.

7.5.2 Private Buffers

Using private buffers, on the other hand, requires enough reserved memory areafor the full capacity of every
message queue that will be created. This approach clearly uses up more memory; however, it also ensures that
messages do not get overwritten and that room is available for all messages, resulting in better reliability than
the pool approach.




7.6 Typical Message Queue Operations

Typical message queue operations include the following:

creating and deleting message queues,

sending and receiving messages, and

obtaining message queue information.

7.6.1 Creating and Deleting M essage Queues

M essage queues can be created and deleted by using two simple calls, as shown in Table 7.1.
Table 7.1: Message queue creation and deletion operations.

Operation Description
Create Creates a message queue
Delete Deletes a message queue

When created, message queues are treated as global objects and are not owned by any particular task.
Typicaly, the queue to be used by each group of tasks or ISRs is assigned in the design.

When creating a message queue, a developer needs to make someinitial decisions about the length of the
message queue, the maximum size of the messages it can handle, and the waiting order for tasks when they block

oNn amessage queue.

Deleting a message queue automatically unblocks waiting tasks. The blocking call in each of these tasks returns
with an error. Messages that were queued are lost when the queue is deleted.

7.6.2 Sending and Recelving M essages

The most common uses for a message queue are sending and receiving messages. These operations are
performed in different ways, some of which arelisted in Table 7.2 .
Table 7.2: Sending and receiving messages.

Operation

Description

Send

Sends a message to a message queue




Recelve Receives a message from a message queue

Broadcast Broadcasts messages

Sending M essages

When sending messages, akernel typicaly fills amessage queue from head to tail in FIFO order, as shownin

Sending Messages - First-In, First-Out [IEIFD] Order
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Figure 7.4. Each new message is placed at the end of the queue. IE
Figure 7.4: Sending messagesin FIFO or LIFO order.

Many message-gqueue implementations allow urgent messages to go straight to the head of the queue. If all
arriving messages are urgent, they al go to the head of the queue, and the queuing order effectively becomes
last-in/first-out (LIFO). Many message-queue implementations also allow | SRs to send messages to a message
gueue. In any case, messages are sent to a message queue in the following ways:

not block (1SRs and tasks),

block with atimeout (tasks only), and
block forever (tasks only).

At times, messages must be sent without blocking the sender. If a message queueis already full, the send call
returns with an error, and the task or ISR making the call continues executing. Thistype of approach to sending
messages is the only way to send messages from I1SRs, because | SRs cannot block.

Most times, however, the system should be designed so that atask will block if it attempts to send a message to
aqueuethat isfull. Setting the task to block either forever or for a specified timeout accomplishes this step. (
Figure 7.5). The blocked task is placed in the message queue s task-waiting list, which is set up in either FIFO
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Figure 7.5: FIFO and priority-based task-waiting lists.

In the case of atask set to block forever when sending a message, the task blocks until a message queue element
becomes free (e.g., areceiving task takes a message out of the queue). In the case of atask set to block for a
specified time, the task is unblocked if either a queue element becomes free or the timeout expires, in which
case an error isreturned.

Recelving M essages

As with sending messages, tasks can receive messages with different blocking policies the same way as they
send them with a policy of not blocking, blocking with atimeout, or blocking forever. Note, however, that in
this case, the blocking occurs due to the message queue being empty, and the receiving tasks wait in either a
FIFO or prioritybased order. The diagram for the receiving tasksis similar to Figure 7.5, except that the
blocked receiving tasks are what fills the task list.

For the message queue to become full, either the receiving task list must be empty or the rate at which messages
are posted in the message queue must be greater than the rate at which messages are removed. Only when the
message queue is full does the task-waiting list for sending tasks start to fill. Conversely, for the task-waiting
list for receiving tasks to start to fill, the message queue must be empty.

Messages can be read from the head of a message queue in two different ways:
destructive read, and
non-destructive read.

In adestructive read, when atask successfully receives a message from a queue, the task permanently removes
the message from the message queue s storage buffer. In anon-destructive read, areceiving task peeks at the
message at the head of the queue without removing it. Both ways of reading a message can be useful; however,
not all kernel implementations support the non-destructive read.

Some kernels support additional ways of sending and receiving messages. One way is the example of peeking at
amessage. Other kernels allow broadcast messaging, explained later in this chapter.

7.6.3 Obtaining M essage Queue | nfor mation

Obtaining message queue information can be done from an application by using the operationslisted in Table



7.3.

Table 7.3: Obtaining message queue information operations.

Operation

Description

Show queueinfo

Getsinformation on a message queue

Show queue s task-waiting list

Getsalist of tasks in the queue s task-waiting list

Different kernels allow devel opers to obtain different types of information about a message queue, including the
message queue 1D, the queuing order used for blocked tasks (FIFO or priority-based), and the number of
messages queued. Some calls might even allow developersto get afull list of messages that have been queued

up.

Aswith other callsthat get information about a particular kernel object, be careful when using these calls. The
information is dynamic and might have changed by thetimeit s viewed. These types of calls should only be

used for debugging purposes.




7.7 Typical Message Queue Use

The following are typical ways to use message queues within an application:

non-interlocked, one-way data communication,

interlocked, one-way data communication,

interlocked, two-way data communication, and

broadcast communication.

Note that thisis not an exhaustive list of the data communication patterns involving message queues. The
following sections discuss each of these smple cases.

7.7.1 Non-Interlocked, One-Way Data Communication

One of the simplest scenarios for message-based communications requires a sending task (also called the
message source), a message queue, and areceiving task (also called amessage sink), asillustrated in Figure 7.6

tSourceTask |—» —»| TSinkTask

Figure 7.6: Non-interlocked, one-way data communication.

Thistype of communication is aso called non-interlocked (or loosely coupled), one-way data communication.
The activities of tSourceTask and tSinkTask are not synchronized. TSourceTask simply sends a message; it
does not require acknowledgement from tSinkTask.

The pseudo code for this scenario is provided in Listing 7.1.
Listing 7.1: Pseudo code for non-interlocked, one-way data communication.

ceTask ()

Send message to nessage queue

}

t Si nkTask ()
{

Recei ve nessage from nessage queue

nkTask is set to a higher priority, it runsfirst until it blocks on an empty message queue. As soon as
tSourceTask sends the message to the queue, tSinkTask receives the message and starts to execute again.



If tSinkTask is set to alower priority, tSourceTask fills the message queue with messages. Eventualy,
tSourceTask can be made to block when sending a message to a full message queue. This action makes
tSinkTask wake up and start taking messages out of the message queue.

ISRstypically use non-interlocked, one-way communication. A task such astSinkTask runs and waits on the
message queue. When the hardware triggers an I SR to run, the | SR puts one or more messages into the message
gueue. After the ISR completes running, tSinkTask gets an opportunity to run (if it s the highest-priority task)
and takes the messages out of the message queue.

Remember, when 1 SRs send messages to the message queue, they must do so in anon-blocking way. If the
message queue becomes full, any additional messages that the | SR sends to the message queue are |ost.

7.7.2 Interlocked, One-Way Data Communication

In some designs, a sending task might require a handshake (acknowledgement) that the receiving task has been
successful in receiving the message. This processis called interlocked communication, in which the sending
task sends a message and waits to see if the message is received.

This requirement can be useful for reliable communications or task synchronization. For example, if the
message for some reason is not received correctly, the sending task can resend it. Using interlocked

communication can close a synchronization loop. To do so, you can construct a continuous loop in which
sending and receiving tasks operate in lockstep with each other. An example of one-way, interlocked data

- L
tSourceTask tSinkTask

—
o L@
communication isillustrated in Figure 7.7.

Figure 7.7: Interlocked, one-way data communication.

In this case, tSourceTask and tSinkTask use a binary semaphore initially set to 0 and a message queue with a
length of 1 (also called a mailbox). tSourceTask sends the message to the message queue and blocks on the
binary semaphore. tSinkTask receives the message and increments the binary semaphore. The semaphore that
has just been made available wakes up tSourceTask. tSourceTask, which executes and posts another message
into the message queue, blocking again afterward on the binary semaphore.

The pseudo code for interlocked, one-way data communication is provided in Listing 7.2.

The semaphorein this case acts as a smple synchronization object that ensures that tSourceTask and tSinkTask
arein lockstep. This synchronization mechanism also acts as a simple acknowledgement to tSourceTask that it s
okay to send the next message.

7.7.3 Interlocked, Two-Way Data Communication

Sometimes data must flow bidirectionally between tasks, which is called interlocked, two-way data
communication (also called full-duplex or tightly coupled communication). Thisform of communication can be
useful when designing a client/server-based system. A diagram is provided in Figure 7.8.

t ClientTask 1 I’ t ServerTask

Figure 7.8: Interlocked, two-way data communication.
Listing 7.2: Pseudo code for interlocked, one-way data communication.




t Sour ceTask ()
{

Send nessage to nessage queue
Acqui re bi nary semaphore

}

t Si nkTask ()
{

Recei ve nessage from nmessage queue
G ve binary semaphore

nnis case, tClientTask sends arequest to tServerTask via amessage queue. tServer-Task fulfills that request
by sending amessage back to tClientTask.

The pseudo code is provided in Listing 7.3.
Listing 7.3: Pseudo code for interlocked, two-way data communication.

nt Task ()

Send a nessage to the requests queue
Wait for nessage fromthe server queue

}

t Server Task ()
{

Recei ve a nmessage fromthe requests queue
Send a nessage to the client queue

ote that two separate message queues are required for full-duplex communication. If any kind of data needsto
be exchanged, message queues are required; otherwise, a smple semaphore can be used to synchronize
acknowledgement.

In the smple client/server example, tServerTask istypically set to ahigher priority, allowing it to quickly

fulfill client requests. If multiple clients need to be set up, al clients can use the client message queue to post
requests, while tServerTask uses a separate message queue to fulfill the different clients requests.

7.7.4 Broadcast Communication

Some message-queue implementations allow devel opers to broadcast a copy of the same message to multiple

j tSinkTask 1

tSinkTask 2

tBroadcastTask [—»

v

tSinkTask 3

tasks, as shown in Figure 7.9.

Figure 7.9: Broadcasting messages.



Message broadcasting is a one-to-many-task relationship. tBroadcastTask sends the message on which multiple
tSink-Task are waiting.

Pseudo code for broadcasting messagesis provided in Listing 7.4.
Listing 7.4: Pseudo code for broadcasting messages.

dcast Task ()

Send broadcast nessage to queue

}

Note: sinilar code for tSignal Tasks 1, 2, and 3.

t Si gnal Task ()
{

Recei ve message on queue

Nninis scenario, tSinkTask 1, 2, and 3 have al made calls to block on the broadcast message queue, waiting for
amessage. When tBroadcastTask executes, it sends one message to the message queue, resulting in all three
waliting tasks exiting the blocked state.

Note that not all message queue implementations might support the broadcasting facility. Refer to the RTOS
manual to see what types of message-queue-management services and operations are supported.




7.8 Pointsto Remember

Some points to remember include the following:

Message queues are buffer-like kernel objects used for data communication and synchronization between
two tasks or between an ISR and atask.

M essage queues have an associated message queue control block (QCB), aname, aunigque ID, memory
buffers, a message queue length, a maximum message length, and one or more task-waiting lists.

The beginning and end of message queues are called the head and tail, respectively; each buffer that can
hold one message is called a message-queue element.

M essage queues are empty when created, full when all message queue el ements contain messages, and not
empty when some elements are still available for holding new messages.

Sending messages to full message queues can cause the sending task to block, and receiving messages
from an empty message queue can cause a receiving task to block

Tasks can send to and receive from message queues without blocking, via blocking with atimeout, or via
blocking forever. An ISR can only send messages without blocking.

The task-waiting list associated with a message-queue can rel ease tasks (unblock them) in FIFO or
priority-based order.WWhen messages are sent from one task to another, the message istypically copied
twice: once from the sending task s memory areato the message queue s and a second time from the
message queue s memory areato thetask s.

The dataitself can either be sent as the message or as a pointer to the data as the message. Thefirst case
is better suited for smaller messages, and the latter case is better suited for large messages.

Common message-queue operations include creating and del eting message queues, sending to and
receiving from message queues, and obtaining message queue information.

Urgent messages are inserted at the head of the queue if urgent messages are supported by the
message-queue implementation.

Some common way's to use message queues for data based communication include non-interlocked and
interlocked queues providing one-way or two-way data communication.




Chapter 8. Other Kernel Objects

8.1 Introduction

In addition to the key kernel objects, such as tasks, semaphores, and message queues, kernels provide many
other important objects as well. Because every kernd is different, the number of objects agiven kernel supports
can vary from one to another. This chapter explores additiona kernel objects common to embedded systems
development, although the list presented hereis certainly not al-inclusive. Specifically, this chapter focuses on:

other kernel objects, including pipes, event registers, signals, and condition variables,

object definitions and genera descriptions,

associated operations, and

typical applications of each.




8.2 Pipes

Pipes are kernel objects that provide unstructured data exchange and facilitate synchronization among tasks. Ina
traditional implementation, apipeisaunidirectiona data exchange facility, as shownin Figure8.1. Two
descriptors, one for each end of the pipe (one end for reading and one for writing), are returned when the pipe
is created. Datais written via one descriptor and read via the other. The dataremains in the pi peasan
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unstructured byte stream. Datais read from the pipe in FIFO order. one descriptor the other descriptor
Figure 8.1: A common pipe unidirectional.

A pipe provides a simple data flow facility so that the reader becomes blocked when the pipe is empty, and the
writer becomes blocked when the pipeisfull. Typically, apipeis used to exchange data between a
data-producing task and a data-consuming task, as shown in Figure 8.2. It is a'so permissible to have severa
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writers for the pipe with multiple readers on it.
Figure 8.2: Common pipe operation.

Note that a pipeis conceptually similar to a message queue but with significant differences. For example, unlike
amessage queue, a pipe does not store multiple messages. Instead, the data that it storesis not structured, but
consists of astream of bytes. Also, the datain a pipe cannot be prioritized; the data flow is strictly first-in,
first-out FIFO. Findly, asis described below, pipes support the powerful select operation, and message queues
do not.

8.2.1 Pipe Control Blocks

Pipes can be dynamically created or destroyed. The kernel creates and maintains pipe-specific information in
an internal data structure called a pipe control block . The structure of the pipe control block varies from one
implementation to another. In its general form, a pipe control block contains a kernel-allocated data buffer for
the pipe sinput and output operation. The size of this buffer is maintained in the control block and is fixed when
the pipeis created; it cannot be atered at run time. The current data byte count, aong with the current input and
output position indicators, are part of the pipe control block. The current data byte count indicates the amount of
readable datain the pipe. The input position specifies where the next write operation begins in the buffer.
Similarly, the output position specifies where the next read operation begins. The kernel creates two
descriptors that are unique within the system 1/0 space and returns these descriptors to the creating task. These
descriptorsidentify each end of the pipe uniquely.

Two task-waiting lists are associated with each pipe, as shown in Figure 8.3. One waiting list keeps track of
tasks that are waiting to write into the pipe whileit isfull; the other keeps track of tasks that are waiting to read
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Figure 8.3: Pipe control block.

8.2.2 Pipe States

A pipe has alimited number of states associated with it from the time of its creation to its termination. Each
state corresponds to the data transfer state between the reader and the writer of the pipe, asillustrated in Figure
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Figure 8.4. States of a pipe.

8.2.3 Named and Unnamed Pipes

A kernel typically supports two kinds of pipe objects. named pipes and unnamed pipes. A named pipe , also
known as FIFO, has aname similar to afile name and appearsin the file system asif it were afile or adevice.
Any task or I SR that needs to use the named pipe can referenceit by name. The unnamed pipe does not have a
name and does not appear in the file system. It must be referenced by the descriptors that the kernel returns
when the pipeis created, as explained in more detail in the following sections.

8.2.4 Typical Pipe Operations

The following set of operations can be performed on a pipe:

create and destroy a pipe,

read from or write to a pipe,

issue control commands on the pipe, and

select on a pipe.

Create and Destroy



Create and destroy operations are available, as shown in Table 8.1.
Table 8.1: Create and destroy operations.

Oper ation Description

Pipe Creates apipe

Open Opens apipe

Close Deletes or closes a pipe

The pipe operation creates an unnamed pipe. This operation returns two descriptors to the calling task, and
subsequent calls reference these descriptors. One descriptor is used only for writing, and the other descriptor is
used only for reading.

Creating anamed pipeis similar to creating afile; the specific call isimplementation-dependent. Some
common names for such a call are mknod and mkfifo. Because a named pipe has a recognizable namein thefile
system after it is created, the pipe can be opened using the open operation. The calling task must specify
whether it is opening the pipe for the read operation or for the write operation; it cannot be both.

The close operation is the counterpart of the open operation. Similar to open, the close operation can only be

performed on a named pipe. Some implementations will delete the named pipe permanently once the close
operation completes.

Read and Write

Read and write operations are available, as shown in Table 8.2.
Table 8.2: Read and write operations.

Operation Description
Read Reads from the pipe
Write Writesto apipe

The read operation returns data from the pipe to the calling task. The task specifies how much datato read. The
task may choose to block waiting for the remaining datato arrive if the size specified exceeds what is available
in the pipe. Remember that aread operation on a pipe is a destructive operation because data is removed from a
pipe during this operation, making it unavailable to other readers. Therefore, unlike a message queue, a pipe
cannot be used for broadcasting data to multiple reader tasks.

A task, however, can consume a block of data originating from multiple writers during one read operation.

The write operation appends new data to the existing byte stream in the pipe. The calling task specifies the
amount of datato write into the pipe. The task may choose to block waiting for additional buffer spaceto
become free when the amount to write exceeds the available space.

No message boundaries exist in a pipe because the data maintained in it is unstructured. Thisissue represents
the main structural difference between a pipe and a message queue. Because there are no message headers, it is
impossible to determine the original producer of the data bytes. As mentioned earlier, another important
difference between message queues and pipesis that data written to a pipe cannot be prioritized. Because each
byte of datain a pipe has the same priority, a pipe should not be used when urgent data must be exchanged



between tasks.

Controal

Control operations are available, as shown in Table 8.3.
Table 8.3: Control operations.

Operation Description

Fentl Provides control over the pipe descriptor

The Fentl operation provides generic control over a pipe s descriptor using various commands, which control
the behavior of the pipe operation. For example, acommonly implemented command is the non-blocking
command. The command controls whether the calling task is blocked if aread operation is performed on an
empty pipe or when awrite operation is performed on afull pipe.

Another common command that directly affects the pipe is the flush command. The flush command removes all
data from the pipe and clears all other conditions in the pipe to the same state as when the pipe was created.
Sometimes atask can be preempted for too long, and when it finally getsto read data from the pipe, the data
might no longer be useful. Therefore, the task can flush the data from the pipe and reset its state.

Select

Select operations are available, as shown in Table 8.4.
Table 8.4: Select operations.

Operation Description

Select Waits for conditions to occur on apipe

The select operation allows atask to block and wait for a specified condition to occur on one or more pipes.
The wait condition can be waiting for data to become available or waiting for data to be emptied from the
pipe(s). Figure 8.5 illustrates a scenario in which a single task is waiting to read from two pipes and writeto a
third. In this case, the select call returns when data becomes available on either of the top two pipes. The same
select call also returns when space for writing becomes available on the bottom pipe. In general, atask reading
from multiple pipes can perform a select operation on those pipes, and the select call returns when any one of
them has data available. Similarly, atask writing to multiple pipes can perform a select operation on the pipes,
and the select call returns When space becomes available on any one of them.
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Figure 8.5: The select operation on multiple pipes.

In contrast to pipes, message queues do not support the select operation. Thus, while atask can have accessto
multiple message queues, it cannot block-wait for data to arrive on any one of a group of empty message
gueues. The same restriction appliesto awriter. In this case, atask can write to multiple message queues, but a
task cannot block-wait on agroup of full message queues, while waiting for space to become available on any



one of them.

It becomes clear then that the main advantage of using a pipe over amessage queue for intertask communication
isthat it allows for the select operation.

8.2.5 Typical Uses of Pipes

Because a pipe isasimple data channel, it is mainly used for task-to-task or |SR-to-task data transfer, as
illustrated in Figure 8.1 and Figure 8.2. Another common use of pipesisfor inter-task synchronization.

Inter-task synchronization can be made asynchronous for both tasks by using the select operation.

In Figure 8.6, task A and task B open two pipes for inter-task communication. The first pipe is opened for data
transfer from task A to task B. The second pipe is opened for acknowledgement (another data transfer) from
task B to task A. Both tasks issue the select operation on the pipes. Task A can wait asynchronoudly for the data
pipe to become writeable (task B has read some data from the pipe). That is, task A can issue a non-blocking
call to write to the pipe and perform other operations until the pipe becomes writeable. Task A can also wait
asynchronoudly for the arrival of the transfer acknowledgement from task B on the other pipe. Similarly, task B
can wait asynchronously for the arrival of data on the data gi‘pe angi F‘\{!yait for{;.he other pipe to become writeable
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Figure 8.6: Using pipes for inter-task synchronization.




8.3 Event Registers

Some kernels provide a special register as part of each task s control block, as shown in Figure 8.7. This
register, called an event register, isan object belonging to atask and consists of a group of binary event flags
used to track the occurrence of specific events. Depending on a given kernel simplementation of this
mechanism, an event register can be 8-, 16-, or 32-bits wide, maybe even more. Each bit in the event register is
treated like abinary flag (also called an event flag) and can be either set or cleared.

Through the event register, atask can check for the presence of particular events that can control its execution.
An external source, such as another task or an ISR, can set bitsin the event register to inform the task that a
particular event has occurred.

Applications define the event associated with an event flag. This definiti gnanEUSt be agreed upon between the
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Figure 8.7: Event register.

8.3.1 Event Register Control Blocks

Typically, when the underlying kernel supports the event register mechanism, the kernel creates an event
register control block as part of the task control block when creating a task, as shown in Figure 8.8.

Event Register Control Block

wanted events

received events

timeout value

notification conditions

Task Control Block
Figure 8.8: Event register control block.
The task specifies the set of eventsit wishesto receive. This set of eventsis maintained in the wanted events
register. Similarly, arrived events are kept in the received events register. The task indicates atimeout to
specify how long it wishes to wait for the arrival of certain events. The kernel wakes up the task when this
timeout has elapsed if no specified events have arrived at the task.

Using the notification conditions, the task directs the kernel asto when it wishes to be notified (awakened) upon



event arrivals. For example, the task can specify the notification conditions as send notification when both
event type 1 and event type 3 arrive or when event type 2 arrives. This option provides flexibility in defining
complex natification patterns.

8.3.2 Typical Event Register Operations

Two main operations are associated with an event register, the sending and the receiving operations, as shown
in Table 8.5.
Table 8.5: Event register operations.

Operation Description
Send Sends eventsto atask
Receive Receives events

The receive operation allows the calling task to receive events from external sources. The task can specify if it
wishesto wait, as well as the length of time to wait for the arrival of desired events before giving up. The task
can wait forever or for a specified interval. Specifying a set of events when issuing the receive operation
allows atask to block-wait for the arrival of multiple events, although events might not necessarily all arrive
simultaneously. The kernel trandates this event set into the notification conditions. The receive operation
returns either when the notification conditions are satisfied or when the timeout has occurred. Any received
events that are not indicated in the receive operation are |eft pending in the received events register of the event
register control block. The receive operation returnsimmediately if the desired events are already pending.

The event set is constructed using the bit-wise AND/OR operation. With the AND operation, the task resumes
execution only after every event bit from the set ison. A task can aso block-wait for the arrival of asingle
event from an event set, which is constructed using the bit-wise OR operation. In this case, the task resumes
execution when any one event bit from the set is on.

The send operation allows an external source, either atask or an ISR, to send events to another task. The sender
can send multiple events to the designated task through a single send operation. Events that have been sent and
are pending on the event bits but have not been chosen for reception by the task remain pending in the received
events register of the event register control block.

Eventsin the event register are not queued. An event register cannot count the occurrences of the same event
whileit is pending; therefore, subsequent occurrences of the same event are lost. For example, if an ISR sends
an event to atask and the event is left pending; and later another task sends the same event again to the same task
whileit is still pending, the first occurrence of the event islost.

8.3.3 Typical Uses of Event Registers

Event registers are typically used for unidirectional activity synchronization. It is unidirectional because the
issuer of the receive operation determines when activity synchronization should take place. Pending eventsin
the event register do not change the execution state of the receiving task.

In following the diagram, at the time task 1 sends the event X to task 2, no effect occurs to the execution state of

Send Event X 1o Task 2
Receive Event X

task 2 if task 2 has not yet attempted to receive the event. ! il Task 2



No datais associated with an event when events are sent through the event register. Other mechanisms must be
used when data needs to be conveyed along with an event. Thislack of associated data can sometimes create
difficulties because of the noncumulative nature of eventsin the event register. Therefore, the event register by
itself is an inefficient mechanism if used beyond ssmple activity synchronization.

Another difficulty in using an event register isthat it does not have a built-in mechanism for identifying the
source of an event if multiple sources are possible. One way to overcome this problem isfor atask to divide
the event bitsin the event register into subsets.

The task can then associate each subset with aknown source. In thisway, the task can identify the source of an
event if each relative bit position of each subset is assigned to the same event type.

In Figure 8.9, an event register is divided into 4-bit groups. Each group is assigned to a source, regardless of
whether it isatask or an ISR. Each bit of the group is assigned to an event type.
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Figure 8.9: Identifying an event source.




8.4 Signals

A signal isasoftware interrupt that is generated when an event has occurred. It diverts the signal receiver from
its normal execution path and triggers the associated asynchronous processing.

Essentially, signals notify tasks of eventsthat occurred during the execution of other tasks or ISRs. Aswith
normal interrupts, these events are asynchronous to the notified task and do not occur at any predetermined point
in the task s execution. The difference between asignal and anormal interrupt isthat signals are so-called
software interrupts, which are generated via the execution of some software within the system. By contrast,
normal interrupts are usually generated by the arrival of an interrupt signal on one of the CPU s externa pins.
They are not generated by software within the system but by external devices. Chapter 10 discusses interrupts
and exceptions in detall.

The number and type of signals defined is both system-dependent and RTOS-dependent. An easy way to
understand signalsis to remember that each signal is associated with an event. The event can be either
unintentional, such as an illegal instruction encountered during program execution, or the event may be
intentional, such as a notification to one task from another that it is about to terminate. While atask can specify
the particular actions to undertake when a signal arrives, the task has no control over when it receives signals.
Consequently, the signal arrlvals often ap| appear quite random, as shown in Figure 8.10.
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Figure 8.10: Signals.

When asignal arrives, the task is diverted from its normal execution path, and the corresponding signal routine
isinvoked. Theterms signal routine, signal handler, asynchronous event handler, and asynchronous signal
routine are interchangeable. This book uses asynchronous signal routine (ASR). Each signal isidentified by
an integer value, which isthe signal number or vector number .

8.4.1 Signal Control Blocks

If the underlying kernel provides asignal facil it¥|g't creates the signal control block as part of the task control

nal Control Block

| wanted signals
signal handler

ignored signals
‘ ‘9 9 | signal handler

lpending signals | signal handler

[ blocked signals | signal handler

block as shown in Figure 8.11. Task Control Block
Figure 8.11: Signal control block.

The signal control block maintains a set of signals the wanted signals which the task is prepared to handle.



When atask is prepared to handle asignal, it isoften said, thetask is ready to catch thesignal. When asignal
interrupts atask, it isoften said, the signal is raised to thetask. Thetask can provide asignal handler for each
signal to be processed, or it can execute a default handler that the kernel provides. It is possible to have asingle
handler for multiple types of signals.

Signals can be ignored, made pending, processed (handled), or blocked.

The signalsto beignored by the task are maintained in the ignored signals set. Any signal in this set does not
interrupt the task.

Other signals can arrive while the task isin the midst of processing another signal. The additional signal
arrivals are kept in the pending signals set. The signalsin this set are raised to the task as soon as the task
completes processing the previous signal. The pending signals set is a subset of the wanted signal's set.

To process a particular signal, either the task-supplied signal handler can be used for signal processing or the
default handler supplied by the underlying kernel can be used to processit. It isaso possible for the task to
process the signal first and then passit on for additional processing by the default handler.

A fourth kind of responseto asignal is possible. In this case, atask does not ignore the signal but blocks the
signal from delivery during certain stages of the task s execution when it is critica that the task not be
interrupted.

Blocking asignal is similar to the concept of entering acritical section, discussed in Chapter 15. The task can

instruct the kernel to block certain signals by setting the blocked signals set. The kernel does not deliver any
signal from this set until that signal is cleared from the set.

8.4.2 Typical Signal Operations

Signal operations are available, as shown in Table 8.6.
Table 8.6: Signal operations.

Operation Description

Catch Installsasignal handler

Release Removes a previoudly installed handler

Send Sendsasignal to another task

Ignore Prevents asignal from being delivered

Block Blocks a set of signal from being delivered
Unblock Unblocks the signals so they can be delivered

A task can catch asignal after the task has specified ahandler (ASR) for the signal. The catch operation installs
ahandler for aparticular signal. The kernel interrupts the task s execution upon the arrival of the signal, and the
handler isinvoked. Thetask can install the kernel-supplied default handler, the default actions, for any signal.
The task-installed handler has the options of either processing the signal and returning control to the kernel or
processing the signal and passing control to the default handler for additional processing. Handling signalsis
similar to handling hardware interrupts, and the nature of the ASR is similar to that of the interrupt service



routine.

After ahandler has been installed for a particular signal, the handler isinvoked if the same type of signal is
received by any task, not just the one that installed it. In addition, any task can change the handler installed for a
particular signal. Therefore, it is good practice for atask to save the previoudly installed handler before
installing its own and then to restore that handler after it finishes catching the handler s corresponding signal.

Figure 8.12 showsthe signal vector table, which the kernel maintains. Each element in the vector tableisa
pointer or offset to an ASR. For signalsthat don t have handlers assigned, the corresponding elements in the
vector table are NULL. The example shows the table after three catch operations have been performed. Each
catgfpngperati oninstalls one ASR, by writing a pointer or offset to the ASR into an element of the vector table.
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Figure 8.12: The catch operation.

The release operation de-installs asignal handler. It is good practice for atask to restore the previously
installed signal handler after calling release.

The send operation allows one task to send a signal to another task. Signals are usually associated with
hardware events that occur during execution of atask, such as generation of an unaligned memory address or a
floating-point exception. Such signals are generated automatically when their corresponding events occur. The
send operation, by contrast, enables atask to explicitly generate asignal.

The ignore operation allows atask to instruct the kernel that a particular set of signals should never be
delivered to that task. Some signals, however, cannot be ignored; when these signals are generated, the kernel
callsthe default handler.

The block operation does not cause signals to be ignored but temporarily prevents them from being delivered to
atask. The block operation protects critical sections of code from interruption. Another reason to block a signal
isto prevent conflict when the signal handler is aready executing and isin the midst of processing the same
signal. A signal remains pending whileit s blocked.

The unblock operation allows a previously blocked signal to pass. The signal isdelivered immediately if itis
aready pending.

8.4.3 Typical Uses of Signals

Some signals are associated with hardware events and thus are usually sent by hardware ISRs. The ISR is
responsible for immediately responding to these events. The ISR, however, might also send asignal so that
tasks affected by these hardware events can conduct further, task-specific processing.

Asdepicted in Figure 8.10, signals can a so be used for synchronization between tasks. Signals, however,
should be used sparingly for the following reasons.

Using signals can be expensive due to the complexity of the signal facility when used for inter-task
synchronization. A signal aters the execution state of its destination task. Because signal's occur
asynchronoudly, the receiving task becomes nondeterministic, which can be undesirablein areal-time



system.

Many implementations do not support queuing or counting of signals. In these implementations, multiple
occurrences of the same signal overwrite each other. For example, asignal delivered to atask multiple
times before its handler isinvoked has the same effect as a single delivery. The task has no way to
determineif asignal has arrived multiple times.

Many implementations do not support signa delivery that carries information, so data cannot be attached
to asigna during its generation.

Many implementations do not support asignal delivery order, and signals of various types are treated as
having equal priority, which isnot ideal. For example, asignal triggered by a page fault is obvioudy
more important than asignal generated by atask indicating it is about to exit. On an equa-priority system,
the page fault might not be handled first.

Many implementations do not guarantee when an unblocked pending signal will be delivered to the
destination task.

Some kernels do implement real-time extensions to traditional signal handling, which allows

for the prioritized delivery of asignal based on the signal number,

each signal to carry additional information, and

multiple occurrences of the same signal to be queued.

Team LiB MEXT k



8.5 Condition Variables

Tasks often use shared resources, such as files and communication channels. When atask needs to use such a
resource, it might need to wait for the resource to be in a particular state. The way the resource reaches that
state can be through the action of another task. In such a scenario, a task needs some way to determine the
condition of the resource. One way for tasks to communicate and determine the condition of a shared resourceis
through a condition variable. A condition variable isakernel object that is associated with a shared resource,
which alows one task to wait for other task(s) to create adesired condition in the shared resource. A condition
variable can be associated with multiple conditions.

Asshown in Figure 8.13, a condition variable implements a predicate. The predicate is a set of logical
expressions concerning the conditions of the shared resource. The predicate evaluates to either true or false. A
task evaluates the predicate. If the evaluation is true, the task assumes that the conditions are satisfied, and it
continues execution. Otherwise, the task must wait for other tasks to create the desired conditions.
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Figure 8.13: Condition variable.

When atask examines a condition variable, the task must have exclusive access to that condition variable.
Without exclusive access, another task could alter the condition variable's conditions at the same time, which
could cause the first task to get an erroneous indication of the variable's state. Therefore, amutex is aways
used in conjunction with a condition variable. The mutex ensures that one task has exclusive accessto the
condition variable until that task isfinished with it. For example, if atask acquires the mutex to examine the
condition variable, no other task can ssimultaneously modify the condition variable of the shared resource.

A task must first acquire the mutex before eva uating the predicate. This task must subsequently release the
mutex and then, if the predicate evaluates to false, wait for the creation of the desired conditions. Using the
condition variable, the kernel guarantees that the task can release the mutex and then block-wait for the
condition in one atomic operation, which is the essence of the condition variable. An atomic operation isan
operation that cannot be interrupted.

Remember, however, that condition variables are not mechanisms for synchronizing access to a shared
resource. Rather, most developers use them to allow tasks waiting on a shared resource to reach adesired
value or state.

8.5.1 Condition Variable Control Blocks

The kernel maintains a set of information associated with the condition variable when the variable isfirst
created. As stated previously, tasks must block and wait when a condition variabl€'s predicate evaluates to
false. These waiting tasks are maintained in the task-waiting list. The kernel guarantees for each task that the
combined operation of releasing the associated mutex and performing a block-wait on the condition will be
atomic. After the desired conditions have been created, one of the waiting tasks is awakened and resumes



execution. The criteriafor selecting which task to awaken can be priority-based or FIFO-based, but it is
kernel-defined. The kernel guarantees that the selected task is removed from the task-waiting list, reacquires the
guarding mutex, and resumes its operation in one atomic operation. The essence of the condition variableisthe
atomicity of the unlock-and-wait and the resume-and-lock operations provided by the kernel. Figure 8.14
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illustrates a condition variable control block.

Figure 8.14: Condition variable control block.

The cooperating tasks define which conditions apply to which shared resources. Thisinformation is not part of
the condition variable because each task has a different predicate or condition for which the task looks. The
condition is specific to the task. Chapter 15 presents a detailed example on the usage of the condition variable,
which further illustrates thisissue.

8.5.2 Typical Condition Variable Operations

A set of operationsis allowed for a condition variable, as shown in Table 8.7.
Table 8.7: Condition variable operations.

Operation Description

Create Creates and initializes a condition variable

Wait Waits on a condition variable

Signal Signals the condition variable on the presence of a condition
Broadcast Signalsto all waiting tasks the presence of a condition

The create operation creates a condition variable and initializes its internal control block.

The wait operation allows atask to block and wait for the desired conditions to occur in the shared resource.
To invoke this operation, the task must first successfully acquire the guarding mutex. The wait operation puts the
calling task into the task-waiting queue and rel eases the associated mutex in a single atomic operation.

The signal operation allows atask to modify the condition variable to indicate that a particular condition has
been created in the shared resource. To invoke this operation, the signaling task must first successfully acquire
the guarding mutex. The signal operation unblocks one of the tasks waiting on the condition variable. The
selection of the task is based on predefined criteria, such as execution priority or system-defined scheduling
attributes. At the completion of the signal operation, the kernel reacquires the mutex associated with the
condition variable on behalf of the selected task and unblocks the task in one atomic operation.



The broadcast operation wakes up every task on the task-waiting list of the condition variable. One of these
tasksis chosen by the kernel and is given the guarding mutex. Every other task is removed from the task-waiting
list of the condition variable, and instead, those tasks are put on the task-waiting list of the guarding mutex.

8.5.3 Typical Uses of Condition Variables

Listing 8.1 illustrates the usage of the wait and the signal operations.
Listing 8.1: Pseudo code for wait and the signal operations.

1
OCK mut ex
Exani ne shared resource
Whil e (shared resource is Busy)
VWAI'T (condition variabl e)
Mar k shared resource as Busy
Unl ock mut ex

Task 2
Lock rmut ex
Mar k shared resource as Free
SI GNAL (condition variabl e)
Unl ock mnut ex

on the left locks the guarding mutex as itsfirst step. It then examines the state of the shared resource and
finds that the resourceis busy. It issues the wait operation to wait for the resource to become available, or free.
The free condition must be created by task 2 on the right after it is done using the resource. To create the free
condition, task 2 first locks the mutex; creates the condition by marking the resource as free, and finaly, invokes
the signal operation, which informstask 1 that the free condition is now present.

A signal on the condition variable islost when nothing iswaiting on it. Therefore, atask should aways check
for the presence of the desired condition before waiting on it. A task should also always check for the presence
of the desired condition after a wakeup as a safeguard against improperly generated signals on the condition
variable. Thisissueisthe reason that the pseudo code includes awhile loop to check for the presence of the
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desired condition. This exampleis shown in Figure 8.15.

Figure 8.15: Execution sequence of wait and signal operations.




8.6 Pointsto Remember

Some points to remember include the following:
Pipes provide unstructured data exchange between tasks.
The select operation is allowed on pipes.
Event registers can be used to communi cate application-defined events between tasks.

Events of the same type are not accumulated in the event register.

The occurrence of an event in the event register does not change the execution state of the receiving task,
unless the task is already waiting on that event.

Tasks receive signals synchronoudly.

The occurrence of asignal changes the execution state of the receiving task.

Signals can be handled by user-defined actions or by system-defined default actions.
Multiple occurrences of the same signal are not cumulative.

A condition variable allows one task to wait until another task has placed a shared resource in adesired
state or condition.

A condition variable is used to synchronize between tasks but is not used as a mechanism to synchronize
access to shared resources.




Chapter 9: Other RTOS Services

0.1 Introduction

A good real-time embedded operating system avoids implementing the kernel as alarge, monolithic program.
The kernel is developed instead as a micro-kernel. The goal of the micro-kernel design approach isto reduce
essential kernel servicesinto asmall set and to provide aframework in which other optional kernel services
can be implemented as independent modules. These modules can be placed outside the kernel. Some of these
modules are part of special server tasks. This structured approach makes it possible to extend the kernel by
adding additional services or to modify existing services without affecting users. Thislevel of implementation
flexibility ishighly desirable. The resulting benefit is increased system configurability because each embedded
application requires a specific set of system services with respect to its characteristics. This combination can
be quite different from application to application.

The micro-kernel provides core services, including task-related services, the scheduler service, and
synchronization primitives. This chapter discusses other common building blocks, as shown in Figure 9.1.
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Figure 9.1: Overview.




9.2 Other Building Blocks

These other common building blocks make up the additional kernel servicesthat are part of various embedded
applications. The other building blocks include the following:

TCP/IP protocol stack,

file system component,

remote procedure call component,
command shell,

target debut agent, and

other components.

9.2.1 TCP/IP Protocol Stack

The network protocol stacks and components, asillustrated in Figure 9.2, provide useful system servicesto an
embedded application in a networked environment. The TCP/IP protocol stack provides transport servicesto
both higher layer, well-known protocols, including Simple Network Management Protocol (SNMP), Network
File System (NFS), and Telnet, and to user-defined protocols. The transport service can be either reliable
connection-oriented service over the TCP protocol or unreliable connectionless service over the UDP protocol.
The TCP/IP protocol stack can operate over various types of physical connections and networks, including
Ethernet, Frame Relay, ATM, and ISDN networks using different frame encapsulation protocols, including the
point-to-point protocoal. It is common to find the transport services offered through standard Berkeley socket
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Figure 9.2: TCP/IP protocol stack component.

9.2.2 File System Component

The file system component, asillustrated in Figure 9.3, provides efficient access to both local and network
mass storage devices. These storage devices include but are not limited to CD-ROM, tape, floppy disk, hard
disk, and flash memory devices. Thefile system component structures the storage device into supported formats
for writing information to and for accessing information from the storage device. For example, CD-ROMs are
formatted and managed according to 1SO 9660 standard file system specifications; floppy disks and hard disks
are formatted and managed according to MS-DOS FAT file system conventions and specifications; NFS allows
local applications to access files on remote systems as an NFS client. Files|ocated on an NFS server are
treated exactly as though they were on alocal disk. Because NFSis a protocol, not afile system format, local
applications can access any format files supported by the NFS server. File system components found in some

real-time RTOS provide high-speed proprietary file systemsin place of common storage devices.
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Figure 9.3: File system component.

9.2.3 Remote Procedure Call Component

The remote procedure call (RPC) component allows for distributed computing. The RPC server offers services
to external systems as remotely callable procedures. A remote RPC client can invoke these procedures over the
network using the RPC protocol. To use a service provided by an RPC server, aclient application calls
routines, known as stubs, provided by the RPC client residing on the local machine.

The RPC client in turn invokes remote procedure calls residing in the RPC server on behalf of the calling
application. The primary goal of RPC isto make remote procedure calls transparent to applications invoking
thelocal call stubs. To the client application, calling a stub appears no different from calling alocal procedure.
The RPC client and server can run on top of different operating systems, as well as different types of hardware.
As an example of such transparency, note that NFS relies directly upon RPC callsto support the illusion that al
filesarelocal to the client machine.

To hide both the server remoteness, as well as platform differences from the client application, data that flows
between the two computing systems in the RPC call must be trandated to and from a common format. External
datarepresentation (XDR) is a method that represents datain an OS- and machine-independent manner. The
RPC client trand ates data passed in as procedure parameters into XDR format before making the remote
procedure call. The RPC server trandates the XDR data into machine-specific data format upon receipt of the
procedure call request. The decoded data is then passed to the actual procedure to be invoked on the server
machine. This procedure's output datais formatted into XDR when returning it to the RPC client. The RPC
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Figure 9.4: Remote procedure calls.

9.2.4 Command Shell

The command shell , also called the command interpreter , is an interactive component that provides an
interface between the user and the real-time operating system. The user can invoke commands, such asping, Is,
loader , and route through the shell. The shell interprets these commands and makes corresponding callsinto
RTOS routines. These routines can be in the form of loadable program images, dynamically created programs
(dynamic tasks), or direct system function callsif supported by the RTOS. The programmer can experiment with
different global system callsif the command shell supports this feature. With this feature, the shell can become a
great learning tool for the RTOS in which it executes, asillustrated in Figure 9.5.

Figure 9.5: RTOS command shell.

Some command shell implementations provide a programming interface. A programmer can extend the shell's
functionality by writing additional commands or functions using the shell's application program interface (API).
The shell isusually accessed from the host system using atermina emulation program over a seria interface. It
is possible to access the shell over the network, but this feature is highly implementation-dependent. The shell
becomes a good debugging tool when it supports available debug agent commands. A host debugger is not
always available and can be tedious to set up. On the other hand, the programmer can immediately begin
debugging when a debug agent is present on the target system, as well as acommand shell.

9.2.5 Target Debug Agent

Every good RTOS provides atarget debug agent. Through either the target shell component or asimple seria
connection, the debug agent offers the programmer arich set of debug commands or capabilities. The debug
agent allows the programmer to set up both execution and data access break points. In addition, the programmer
can use the debug agent to examine and modify system memory, system registers, and system objects, such as
tasks, semaphores, and message queues. The host debugger can provide source-level debug capability by
interacting with the target debug agent. With a host debugger, the user can debug the target system without
having to understand the native debug agent commands. The target debug agent commands are mapped into host
debugger commands that are more descriptive and easier to understand. Using an established debug protocol,
the host debugger sends the user-issued debug commands to the target debug agent over the seria cable or the
Ethernet network. The target debug agent acts on the commands and sends the results back to the host debugger.
The host debugger displays the resultsin its user-friendly debug interface. The debug protocol is specific to the



host debugger and its supported debug agent. Be sure to check the host debugging tools against the supported
RTOS debug agents before making a purchase.

9.2.6 Other Components

What has been presented so far isavery small set of components commonly found in available RTOS. Other
service components include the SNMP component. The target system can be remotely managed over the
network by using SNMP. The standard 1/O library provides acommon interface to write to and read from
system I/O devices. The standard system library provides common interfaces to applications for memory
functions and string manipulation functions. These library components make it straightforward to port
applications written for other operating systems as long as they use standard interfaces. The possible services
components that an RTOS can provide are limited only by imagination. The more an embedded RTOS matures
the more components and options it provides to the developer. These components enable powerful embedded
applications programming, while at the same time save overall development costs. Therefore, choose the RTOS
wisely.
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9.3 Component Configuration

The available system memory in many embedded systemsislimited. Therefore, only the necessary service
components are selected into the fina application image. Frequently programmers ask how to configure a
service component into an embedded application. In asimplified view, the selection and consequently the
configuration of service components are accomplished through a set of system configuration files. Look for
these filesin the RTOS devel opment environment to gain a better understanding of available components and
applicable configuration parameters.

Thefirst level of configuration is donein acomponent inclusion header file. For example, call it sys comp.h,
asshownin Listing 9.1.
Listing 9.1: The sys comp.h inclusion header file.

ne | NCLUDE_TCPI P 1
ne INCLUDE_FILE SYS 0

et ne | NCLUDE_SHELL 1
#define | NCLUDE DBG AGENT 1

IS example, the target image includes the TCP/IP protocol stack, the command shell, and the debug agent.
Thefile system is excluded because the sample target system does not have a mass storage device. The
programmer selects the desired components through sys_comp.h.

The second level of configuration is done in a component-specific configuration file, sometimes called the
component description file. For example, the TCP/IP component configuration file could be called net_conf.h,
and the debug agent configuration file might be called the dbg_conf.h. The component-specific configuration file
contains the user-configurable, component-specific operating parameters. These parameters contain default
values. Listing 9.2 uses net_conf.h.

Listing 9.2: The net _conf.h configuration file.

ne NUM_PKT_BUFS 100
ne NUM _SOCKETS 20
erine NUM ROUTES 35
#define NUM_NI CS 40

HIS example, four user-configurable parameters are present: the number of packet buffersto be alocated for
transmitting and receiving network packets; the number of socketsto be allocated for the applications; the
number of routing entriesto be created in the routing table used for forwarding packets; and the number of
network interface data structures to be allocated for installing network devices. Each parameter contains a
default value, and the programmer is allowed to change the value of any parameter present in the configuration
file. These parameters are applicable only to the TCP/IP protocol stack component.

Component-specific parameters must be passed to the component during the initialization phase. The component
parameters are set into a data structure called the component configuration table. The configuration tableis
passed into the component initialization routine. Thislevel isthethird configuration level. Listing 9.3 shows the
configuration file named net_conf.c , which continues to use the network component as the example.

Listing 9.3: The net conf.c configuration file.

ude "sys_conp. h"
ude "net _conf. h"

#if (1 NCLUDE_TCPI P)
struct net_conf_parnms parans;
par ans. num _pkt bufs NUM _PKT_BUFS

par anms. num sockets = NUM SOCKETS
paranms. num_r out es = NUM_RCQUTES
paranms. num NI CS = NUM_N CS



tcpi p_i nit(&parans);

#endi f

e components are pre-built and archived. The function tcpip_init is part of the component. If
INCLUDE_TCPIPisdefined as 1 at the time the application is built, the call to this function triggers the linker
to link the component into the final executable image. At this point, the TCP/IP protocol stack isincluded and
fully configured.

Obvioudly, the examples presented here are ssmple, but the concepts vary little in real systems. Manual
configuration, however, can be tedious when it is required to wading through directories and files to get to the
configuration files. When the configuration file does not offer enough or clear documentation on the
configuration parameters, the processis even harder. Some host development tools offer an interactive and
visua alternative to manua component configuration. The visual component configuration tool allows the
programmer to select the offered components visually. The configurable parameters are also laid out visually
and are easily editable. The outputs of the configuration tool are automatically generated files similar to
sys_comp.h and net_conf.h. Any modification completed through the configuration tool regenerates these files.




0.4 Pointsto Remember

Some points to remember include the following:

Micro-kernel design promotes aframework in which additional service components can be developed to
extend the kernel's functionalities easily.

Debug agents alow programmers to debug every piece of code running on target systems.
Developers should choose a host debugger that understands many different RTOS debug agents.
Components can be included and configured through a set of system configuration files.

Developers should only include the necessary components to safeguard memory efficiency.




Chapter 10: Exceptions and
|nterrupts

10.1 Introduction

Exceptions and interrupts are part of a mechanism provided by the mgjority of embedded processor
architecturesto alow for the disruption of the processor's normal execution path. This disruption can be
triggered either intentionally by application software or by an error, unusual condition, or some unplanned
external event.

Many real-time operating systems provide wrapper functions to handle exceptions and interrupts in order to
shield the embedded systems programmer from the low-level details. This application-programming layer
allows the programmer to focus on high-level exception processing rather than on the necessary, but tedious,
prologue and epilogue system-level processing for that exception. Thisisolation, however, can create
misunderstanding and become an obstacle when the programmer is transformed from an embedded applications
programmer into an embedded systems programme.

Understanding the inner workings of the processor exception facility aids the programmer in making better
decisions about when to best use this powerful mechanism, as well asin designing software that handles
exceptions correctly. The aim of this chapter isto arm the programmer with this knowledge.

This chapter focuses on:

the definitions of exception and interrupt,

the applications of exceptions and interrupts,

acloser look at exceptions and interrupts in terms of hardware support, classifications, priorities, and
causes of spurious interrupts, and

adetailed discussion on how to handle exceptions and interrupts.




10.2 What are Exceptions and I nterrupts?

An exception isany event that disrupts the normal execution of the processor and forces the processor into
execution of special instructionsin a privileged state. Exceptions can be classified into two categories:
synchronous exceptions and asynchronous exceptions.

Exceptions raised by internal events, such as events generated by the execution of processor instructions, are
called synchronous exceptions. Examples of synchronous exceptions include the following:

On some processor architectures, the read and the write operations must start at an even memory address
for certain data sizes. Read or write operations that begin at an odd memory address cause a memory
access error event and raise an exception (called an alignment exception ).

An arithmetic operation that resultsin adivision by zero raises an exception.

Exceptions raised by external events, which are events that do not relate to the execution of processor
instructions, are called asynchronous exception s. In general, these external events are associated with
hardware signals. The sources of these hardware signals are typically external hardware devices. Examples of
asynchronous exceptions include the following:

Pushing the reset button on the embedded board triggers an asynchronous exception (called the system
reset exception ).

The communications processor module that has become an integral part of many embedded designsis
another example of an external device that can raise asynchronous exceptions when it receives data
packets.

Aninterrupt, sometimes called an external interrupt, is an asynchronous exception triggered by an event that
an external hardware device generates. Interrupts are one class of exception. What differentiates interrupts from
other types of exceptions, or more precisely what differentiates synchronous exceptions from asynchronous
exceptions, isthe source of the event. The event source for a synchronous exception isinternally generated from
the processor due to the execution of some instruction. On the other hand, the event source for an asynchronous
exception is an external hardware device.

Because the term interrupt has been used extensively in other texts, therefore, the text that follows uses
exceptions to mean synchronous exceptions and interrupts to mean asynchronous exceptions. The book uses
general exceptions to mean both. Theterm interrupts and external interrupts are used interchangeably
throughout the text.

Exceptions and interrupts are the necessary evils that exist in the majority of embedded systems. Thisfacility,
specific to the processor architecture, if misused, can become the source of troubled designs. While exceptions
and interrupts introduce challenging design complications and impose strict coding requirements, they are
nearly indispensable in embedded applications. The following sections describe the most common and
important uses of these mechanisms.




10.3 Applications of Exceptionsand Interrupts

From an application's perspective, exceptions and external interrupts provide afacility for embedded hardware
(either internal or external to the processor) to gain the attention of application code. Interrupts are a means of
communicating between the hardware and an application currently running on an embedded processor.

In general, exceptions and interrupts help the embedded engineer in three areas:

internal errors and special conditions management,

hardware concurrency, and

service requests management.

10.3.1 Internal Errorsand Special Conditions M anagement

Handling and appropriately recovering from awide range of errors without coming to ahalt is often necessary
in the application areas in which embedded systems are typically employed.

Exceptions are either error conditions or specia conditions that the processor detects while executing
instructions. Error conditions can occur for avariety of reasons. The embedded system might be implementing
an algorithm, for example, to calculate heat exchange or velocity for a cruise control. If some unanticipated
condition occurs that causes a division by zero, over-flow, or other math error, the application must be warned.
In this case, the execution of the task performing the calculation halts, and a special exception service routine
begins. This process gives the application an opportunity to evaluate and appropriately handle the error. Other
types of errorsinclude memory read or write failures (a common symptom of a stray pointer), or attempts to
access floating-point hardware when not installed.

Many processor architectures have two modes of execution: normal and privileged. Some instructions, called
privileged instructions, are allowed to execute only when the processor isin the privileged execution mode.
An exception is raised when a privileged instruction is issued while the processor isin normal execution mode.

Special conditions are exceptions that are generated by specia instructions, such asthe TRAP instruction on the
Motorola 68K processor family. These instructions alow a program to force the processor to move into
privileged execution mode, consequently gaining access to a privileged instruction set. For example, the
instruction used to disable external interrupts must be issued in privileged mode.

Another example of a special condition isthe trace exception generated by the break point feature available on
many processor architectures. The debugger agent, a specia software program running on the embedded device,
handles this exception, which makes using a host debugger to perform software break point and code stepping
possible.

Although not all microcontrollers or embedded processors define the same types of exceptions or handle them

in the same way, an exception facility is available and can assist the embedded systems engineer design a
controlled response to these internal errors and special conditions.

10.3.2 Hardwar e Concurrency and Service Request M anagement



The ability to perform different types of work simultaneously isimportant in embedded systems. Many external
hardware devices can perform device-specific operationsin parallel to the core processor. These devices
reguire minimum intervention from the core processor. The key to concurrency is knowing when the device has
completed the work previously issued so that additional jobs can be given. External interrupts are used to
achieve thisgoal.

For example, an embedded application running on a core processor issues work commands to adevice. The
embedded application continues execution, performing other functions while the device tries to complete the
work issued. After the work is complete, the device triggers an external interrupt to the core processor, which
indicates that the device is now ready to accept more commands. This method of hardware concurrency and use
of external interruptsis common in embedded design.

Another use of external interruptsisto provide a communication mechanism to signal or alert an embedded
processor that an external hardware device is requesting service. For example, an initialized programmable
interval timer chip communicates with the embedded processor through an interrupt when a preprogrammed
timeinterval has expired. (Chapter 11 discusses programmable interval timersin detail.) Similarly, the network
interface device uses an interrupt to indicate the arrival of packets after the received packets have been stored
into memory.

The capabilities of exceptions and their close cousins, external interrupts, empower embedded designs.
Applying the general exception facility to an embedded design, however, requires properly handling general
exceptions according to the source and associated cause of each particular general exception in question. The
following section provides the needed background knowledge.




10.4 A Closer Look at Exceptionsand Interrupts

General exceptions have classifications and are prioritized based on the classifications. It is possible there
exists another level of priorities, imposed and enforced by the interrupt hardware, among the external interrupts.
Understanding the hardware sources that can trigger general exceptions, the hardware that implements the
transfer of control, and the mechanisms for determining where control vectorsreside are al critical to properly
installing general exception handlers and to writing correct general exception handlers.

10.4.1 Programmable Interrupt Controllersand External Interrupts

Most embedded designs have more than one source of externa interrupts, and these multiple external interrupt
sources are prioritized. To understand how this processis handled, a clear understanding of the concept of a
programmable interrupt controller (PIC) isrequired.

The PIC isimplementation-dependent. It can appear in avariety of forms and is sometimes given different
names, however, al serve the same purpose and provide two main functionalities:

Prioritizing multiple interrupt sources so that at any time the highest priority interrupt is presented to the
core CPU for processing.

Offloading the core CPU with the processing required to determine an interrupt's exact source.

The PIC has a set of interrupt request lines. An external source generates interrupts by asserting aphysical
signal on the interrupt request line. Each interrupt request line has a priority assigned to it. Figure 10.1
illustrates a PIC used in conjunction with four interrupt sources. Each interrupt source connects to one distinct
interrupt request line: the airbag deployment sensor, the break deployment sensor, the fuel-level sensor

detecting the amount of gasoline in the system, and areal-time clock.
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Figure 10.1: Programmable interrupt controller.

Figure 10.1 trandates into an interrupt table that captures this information more concisely. The interrupt table
listsall available interrupts in the embedded system. In addition, several other properties help define the
dynamic characteristics of the interrupt source. Table 10.1 is an example of an interrupt table for the
hypothetical example shown in Figure 10.1. The information in the table illustrates all of the sources of external
interrupts that the embedded system must handle.

Why isit important to know this information? Understanding the priorities of the interrupt sources enablesthe



embedded systems programmer to better understand the concept of nested interrupts. The term refersto the
ability of ahigher priority interrupt source to preempt the processing of alower priority interrupt. It iseasy to
see how low-priority interrupt sources are affected by higher priority interrupts and their execution times and
frequency if thisinterrupt table is ordered by overall system priority. Thisinformation aids the embedded
systems programmer in designing and implementing better |SRs that allow for nested interrupts.

The maximum frequency column of the interrupt table specifies the process time constraint placed on all ISRs
that have the smallest impact on the overall system.
Table 10.1: Interrupt table.

Source Priority  |Vector Address IRQ Max Fregq. |Description

Airbag Sensor Highest 14h 8 N/A Deploys airbag

Break Sensor High 18h 7 N/A Deploys the breaking system
Fuel Level Sensor Med 1Bh 6 20Hz Detects the level of gasoline
Real-Time Clock Low 1Dh 5 100Hz Clock runs at 10msticks

The vector address column specifies where in memory the ISR must be installed. The processor automatically
fetches the instruction from one of these known addresses based on the interrupt number, which is specified in
the IRQ column. Thisinstruction begins the interrupt-specific service routine. In this example, the interrupt table
contains a vector address column, but these values are dependent on processor and hardware design. In some
designs, acolumn of indexes is applied to aformula used to calculate an actual vector address. In other designs,
the processor uses a more complex formulation to obtain a vector address before fetching the instructions.
Consult the hardware manual for specific details. Later sections of this chapter discuss the interrupt service
routine in detail. In general, the vector table also covers the service routines for synchronous exceptions. The
service routines are also called vectors in short.

10.4.2 Classification of General Exceptions

Although not all embedded processors implement exceptions in the same manner, most of the more recent
processors have these types of exceptions:

asynchronous-non-maskable,

asynchronous-maskable,

synchronous-precise, and

synchronous-imprecise.

Asynchronous exceptions are classified into maskable and non-maskabl e exceptions. External interrupts are
asynchronous exceptions. Asynchronous exceptions that can be blocked or enabled by software are called
maskabl e exceptions. Similarly, asynchronous exceptions that cannot be blocked by software are called
non-maskabl e exceptions. Non-maskable exceptions are always acknowledged by the processor and processed



immediately. Hardware-reset exceptions are always non-maskabl e exceptions. Many embedded processors
have a dedicated non-maskable interrupt (NMI) request line. Any device connected to the NMI request lineis
allowed to generate an NMI.

External interrupts, with the exception of NMIs, are the only asynchronous exceptions that can be disabled by
software.

Synchronous exceptions can be classified into precise and imprecise exceptions. With precise exception s, the
processor's program counter points to the exact instruction that caused the exception, which is the offending
instruction, and the processor knows where to resume execution upon return from the exception. With modern
architectures that incorporate instruction and data pipelining, exceptions are raised to the processor in the order
of written instruction, not in the order of execution. In particular, the architecture ensures that the instructions
that follow the offending instruction and that were started in the instruction pipeline during the exception do not
affect the CPU state. This chapter is concerned with precise exceptions.

Silicon vendors employ a number of advanced techniques (such as predictive instruction and data loading,
instruction and data pipelining, and caching mechanisms) to streamline overall execution in order to increase
chip performance. For example, the processor can do floating point and integer memory operations out of order
with the non-sequential memory access mode. If an embedded processor implements heavy pipelining or
pre-fetch algorithms, it can often be impossible to determine the exact instruction and associated data that
caused an exception. Thisissue indicates an imprecise exception. Consequently, when some exceptions do
occur, the reported program counter does not point to the offending instruction, which makes the program
counter meaningless to the exception handler.

Why isit important to know this information? Knowing the type of exception for which an exception handler is
written hel ps the programmer determine how the system isto recover from the exception, if the exception is at
all recoverable.

10.4.3 General Exception Priorities

All processors handle exceptions in a defined order. Although not every silicon vendor uses the exact same
order of exception processing, generally exceptions are handled according to these priorities, as shown in Table
10.2.

Table 10.2: Exception priorities.

Highest Asynchronous Non-maskable

* Synchronous Precise
Synchronous Imprecise

Lowest Asynchronous Maskable

The highest priority level of exceptionsis usually reserved for system resets, other significant events, or errors
that warrant the overall system to reset. In many cases, hardware implementations for this exception also cause
much, if not al, of the surrounding hardware to reset to a known state and condition. For this reason, this
exception is treated as the highest level.

The next two priority levelsreflect a set of errors and specia execution conditions internal to the processor. A
synchronous exception is generated and acknowledged only at certain states of the internal processor cycle. The
sources of these errors are rooted in either the instructions or data that is passed along to be processed.

Typically, the lowest priority is an asynchronous exception external to the core processor. Externa interrupts
(except NMIs) are the only exceptions that can be disabled by software.

From an application point of view, all exceptions have processing priority over operating system objects,



including tasks, queues, and semaphores. Fiﬂqure 10.2 illustrates a genera priority framework observed in most
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10.5 Processing General Exceptions

Having introduced the fundamentals of exceptions and externa interrupts, it is time to discuss processing
exceptions and externa interrupts. The overall exception handling mechanism is similar to the mechanism for
interrupt handling. In asimplified view, the processor takes the following steps when an exception or an
external interrupt is raised:

Save the current processor state information.

Load the exception or interrupt handling function into the program counter.
Transfer control to the handler function and begin execution.

Restore the processor state information after the handler function completes.

Return from the exception or interrupt and resume previous execution.
A typica handler function does the following:

Switch to an exception frame or an interrupt stack.

Save additional processor state information.

Mask the current interrupt level but allow higher priority interrupts to occur.

Perform a minimum amount of work so that a dedicated task can complete the main processing.

10.5.1 Installing Exception Handlers

Exception service routines (ESRs) and interrupt service routines (1SRs) must be installed into the system before
exceptions and interrupts can be handled. The installation of an ESR or | SR requires knowledge of the
exception and interrupt table (called the general exception table).

The general exception table, as exemplified in Table 10.1, has avector address column, which is sometimes
also called the vector table. Each vector address points to the beginning of an ESR or ISR. Installing an ESR or
ISR requires replacing the appropriate vector table entry with the address of the desired ESR or ISR.

The embedded system startup code typically installs the ESRs at the time of system initialization. Hardware
device driverstypically install the appropriate | SRs at the time of driver initialization.

If either an exception or an interrupt occurs when no associated handler function isinstalled, the system suffers
asystem fault and may halt. To prevent this problem, it is common for an embedded RTOS to install default



handler functions (i.e., functions that perform small amounts of work to ensure the proper reception of and the
proper return from exceptions) into the vector table for every possible exception and interrupt in the system.
Many RTOSes provide a mechanism that the embedded systems programmer can use to overwrite the default
handler function with his or her own or to allow the programmer to insert further processing in addition to the
default actions. If allowed, the embedded systems programmer can code specific actions before and after the
default action is completed.

In this book, the general term service routine means either an ESR or an ISR when the distinction is not
important.

10.5.2 Saving Processor States

When an exception or interrupt comes into context and before invoking the service routine, the processor must
perform a set of operations to ensure a proper return of program execution after the service routine is compl ete.
Just as tasks save information in task control blocks, exception and interrupt service routines also need to store
blocks of information, called processor state information, somewherein memory. The processor typically
saves aminimum amount of its state information, including the status register (SR) that contains the current
processor execution status bits and the program counter (PC) that contains the returning address, which isthe
instruction to resume execution after the exception. The ESR or the ISR, however, must do more to preserve
more complete state information in order to properly resume the program execution that the exception
preempted. A later section discusses thisissue in more detail.

So, whose stack is used during the exception and interrupt processing?

Stacks are used for the storage requirement of saving processor state information. In an embedded operating
system environment, a stack is a statically reserved block of memory and an active dynamic pointer called a
stack pointer, as shown in Figure 10.3. In some embedded architectures, such as Motorola's 68000
microprocessors, two separate stacks-the user stack (USP) and the supervisor stack (SSP)-are used. The USP
is used when the processor executes in non-privileged mode. The SSPis used when the processor executesin
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Figure 10.3: Store processor state information onto stack.

Section 10.3.1, 'Internal Errors and Special Conditions Management' on page 145, discusses processor
execution modes. On thistype of architecture, the processor consciously selects SSP to store its state
information during genera exception handling. While some architectures offer special support for stack
switching, the balance of this chapter assumes a simple environment with just one run-time stack.

Asdatais saved on the stack, the stack pointer isincremented to reflect the number of bytes copied onto the
stack. This processis often called pushing values on the stack. When values are copied off the stack, the stack
pointer is decremented by the equivalent number of bytes copied from the stack. This processis called popping
values off the stack. The stack pointer always points to the first valid location in order to store data onto the
stack. For purposes of this book, the stack grows up; however, a stack can grow in the opposite direction. Note
that atypical stack does not store identifiers for the contents. Stack users are required to push and pop items
onto and off the stack in asymmetric order. If thisrule is not followed during exception or interrupt processing,
unintended results are likely to occur.

As Chapter 5 discusses, in an embedded operating system environment, all task objects have atask control



block (TCB). During task creation, a block of memory is reserved as a stack for task use, as shown in Figure
10.4. High-level programming languages, such as C and C++, typically use the stack space as the primary
vehicle to pass variables between functions and objects of the language.

Task N TCB and Stack

Task 3 TCB and Stack

Active stack pointer Task 2 TCBE and Stack

s

Task 1 TCB and Stack

Figure 10.4: Task TCB and stack.

The active stack pointer (SP) isreinitialized to that of the active task each time atask context switch occurs.
The underlying real-time kernel performs thiswork. As mentioned earlier, the processor uses whichever stack
the SP pointsto for storing its minimum state information before invoking the exception handler.

Although not al embedded architectures implement exception or interrupt processing in the same way, the
general idea of sizing and reserving exception stack space is the same. In many cases, when general exceptions
occur and atask isrunning, the task's stack is used to handle the exception or interrupt. If alower priority ESR
or ISR isrunning at the time of exception or interrupt, whichever stack the ESR or ISR isusing is aso the stack
used to handle the new exception or interrupt. This default approach on stack usage can be problematic with
nested exceptions or interrupts, which are discussed in detail shortly.

10.5.3 Loading and I nvoking Exception Handlers

Asdiscussed earlier, some differences exist between an ESR and an ISR in the precursory work the processor
performs. Thisissue is caused by the fact that an externa interrupt is the only exception type that can be
disabled by software. In many embedded processor architectures, external interrupts can be disabled or enabled
through a processor control register. This control register directly controls the operation of the PIC and
determines which interrupts the PIC raises to the processor. In these architectures, all external interrupts are
raised to the PIC. The PIC filtersinterrupts according to the setting of the control register and determines the
necessary action. This book assumes this architecture model in the following discussions.

Formally speaking, an interrupt can be disabled, active, or pending. A disabled interrupt isalso called a
masked interrupt. The PIC ignores adisabled interrupt. A pending interrupt is an unacknowledged interrupt,
which occurs when the processor is currently processing a higher priority interrupt. The pending interrupt is
acknowledged and processed after al higher priority interrupts that were pending have been processed. An
active interrupt isthe one that the processor is acknowledging and processing. Being aware of the existence of
apending interrupt and raising this interrupt to the processor at the appropriate time is accomplished through
hardware and is outside the concern of an embedded systems developer.

For synchronous exceptions, the processor first determines which exception has occurred and then calcul ates
the correct index into the vector table to retrieve the ESR. This calculation is dependent on implementation.
When an asynchronous exception occurs, an extrastep isinvolved. The PIC must determineif the interrupt has
been disabled (or masked). If so, the PIC ignores the interrupt and the processor execution state is not affected.
If the interrupt is not masked, the PIC raises the interrupt to the processor and the processor calculates the
interrupt vector address and then loads the exception vector for execution, as shown in Figure 10.5.
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Figure 10.5: Loading exception vector.

Some silicon vendors implement the table lookup in hardware, while others rely on software approaches.
Regardless, the mechanisms are the same. When an exception occurs, avalue or index is calculated for the
table. The content of the table at thisindex or offset reflects the address of a service routine. The program
counter isinitialized with this vector address, and execution begins at this location. Before examining the
general approach to an exception handler, let's first examine nested interrupts and their effect on the stack.

10.5.4 Nested Exceptions and Stack Overflow

Nested exceptions refer to the ability for higher priority exceptions to preempt the processing of lower priority
exceptions. Much like a context switch for tasks when a higher priority one becomes ready, the lower priority
exception is preempted, which allows the higher priority ESR to execute. When the higher priority service
routine is complete, the earlier running service routine returns to execution. Figure 10.6 illustrates this process.
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Figure 10.6: Interrupt nesting.

The task block in the diagram in this example shows a group of tasks executing. A low-priority interrupt then
becomes active, and the associated service routine comes into context. While this service routine is running, a
high-priority interrupt becomes active, and the lower priority service routine is preempted. The high-priority
service routine runs to completion, and control returns to the low-priority service routine. Before the
low-priority service routine completes, another interrupt becomes active. As before, the low-priority service
routine is preempted to allow the medium-priority service routine to complete. Again, before the low-priority
routine can finish, another high-priority interrupt becomes active and runs to completion. The low-priority
service routineisfinally able to run to completion. At that point, the previously running task can resume
execution.

When interrupts can nest, the application stack must be large enough to accommodate the maximum requirements
for the application’'s own nested function invocation, as well as the maximum exception or interrupt nesting
possible, if the application executes with interrupts enabled. Thisissue is exactly where the effects of interrupt
nesting on the application stack are most commonly observed.

Asexemplified in Figure 10.4, N tasks have been created, each with its own TCB and statically allocated stack.
Assuming the stack of the executing task is used for exceptions, a sample scenario, as shown in Figure 10.7,
might look asfollows:

1.

Task 2 iscurrently running.
2.



A low-priority interrupt is received.

Task 2 is preempted while exception processing starts for alow-priority interrupt.

The stack grows to handle exception processing storage needs.

A medium-priority interrupt is received before exception processing is compl ete.

The stack grows again to handle medium-priority interrupt processing storage requirements.

A high-priority interrupt is received before execution processing of the medium interrupt is complete.

The stack grows to handle high-priority interrupt processing storage needs.

INT Mad Max Exception or interrupt
Stack Space Regquired

Max Application lack
Space Allocated

Application Data

Figure 10.7: Nested interrupts and stack overflow.

In each case of exception processing, the size of the stack grows as has been discussed. Note that without a
MMU, no bounds checking is performed when using a stack as a storage medium. As depicted in this example,
the sum of the application stack space requirement and the exception stack space requirement is less than the
actual stack space allocated by Task 2. Consequently, when data is copied onto the stack past the statically
defined limitsin this example, Task 3's TCB is corrupted, which is a stack overflow. Unfortunately, the
corrupted TCB isnot likely to be noticed until Task 3 is scheduled to run. These types of errors can be very
hard to detect. They are afunction of the combination of the running task and the exact frequency, timing, and
sequence of interrupts or exceptions presented to the operating environment. This situation often gives a user or
testing team the sense of a sporadic or flaky system. Sometimes, dependably recreating errors is amost
impossible.

Two solutionsto the problem are available: increasing the application's stack size to accommodate all
possibilities and the deepest levels of exception and interrupt nesting, or having the ESR or ISR switch to its
own exception stack, called an exception frame.

The maximum exception stack sizeisadirect function of the number of exceptions, the number of external
devices connected to each distinct IRQ line, and the priority levels supported by the PIC. The simple solution is
having the application alocate alarge enough stack space to accommodate the worst case, which isif the
lowest priority exception handler executes and is preempted by all higher priority exceptions or interrupts. A
better approach, however, is using an independent exception frame inside the ESR or the ISR. This approach
requires far less total memory than increasing every task stack by the necessary amount.

10.5.5 Exception Handlers

After control istransferred to the exception handler, the ESR or the ISR performs the actual work of exception



processing. Usually the exception handler has two parts. The first part executes in the exception or interrupt
context. The second half executesin atask context.

Exception Frames

The exception frame is also called the interrupt stack in the context of asynchronous exceptions.

Two main reasons exist for needing an exception frame. One reason is to handle nested exceptions. The other
reason is that, as embedded architecture becomes more complex, the ESR or ISR consequently increasesin
complexity. Commonly, exception handlers are written in both machine assembly language and in a high-level
programming language, such as C or C++. As mentioned earlier, the portion of the ESR or ISR written in C or
C++ requires a stack to which to pass function parameters during invocation. Thisfact isalso trueif the ESR or
ISR were to invoke alibrary function written in a high-level language.

The common approach to the exception frameis for the ESR or the ISR to allocate a block of memory, either
statically or dynamically, before installing itself into the system. The exception handler then saves the current
stack pointer into temporary memory storagg&giﬂpitializ& the stack pointer to this private stack, and begins
{ Excoption Handler !
l 1. Save SP - temporary variable
Set SP - to private stack

oo !
] 3. Begin axception processing ]
/ 4. Sat SP < temporary varlable ]

Privately allocated

memory to be used as the
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Active new Stack Pointer

processing. Thisis depicted in Figure 10.8. ik

Figure 10.8: Switching SP to exception frame.

The exception handler can perform more housekeeping work, such as storing additional processor state
information, onto this stack.

Differences between ESR and | SR

One difference between an ESR and an ISR isin the additional processor state information saved.

The three ways of masking interrupts are:

Disable the device so that it cannot assert additional interrupts. Interrupts at all levels can still occur.

Mask the interrupts of equal or lower priority levels, while allowing higher priority interrupts to occur.
The device can continue to generate interrupts, but the processor ignores them.

Disable the global system-wide interrupt request line to the processor (the line between the PIC and the
core processor), as exemplified in Figure 10.1. Interrupts of any priority level do not reach the processor.
This step is equivalent to masking interrupts of the highest priority level.

An ISR would typically deploy one of these three methods to disable interrupts for one or al of these reasons:



the ISR tries to reduce the total number of interrupts raised by the device,

the ISR is non-reentrant, and

the ISR needs to perform some atomic operations.

Some processor architectures keep the information on which interrupts or interrupt levels are disabled inside
the system status register. Other processor architectures use an interrupt mask register (IMR). Therefore, an ISR
needs to save the current IMR onto the stack and disable interrupts according to its own requirements by setting
new mask valuesinto the IMR. The IMR only applies to maskable asynchronous exceptions and, therefore, is
not saved by synchronous exception routines.

One other related difference between an ESR and an ISR is that an exception handler in many cases cannot
prevent other exceptions from occurring, while an 1SR can prevent interrupts of the same or lower priority from
occurring.

Exception Timing

Discussions about the ESR or ISR, however, often mention keeping the ESR or ISR short. How so and how
short should it be? To answer this question, |et's focus the discussion on the external interrupts and the ISR.

It isthe hardware designer's job to use the proper interrupt priority at the PIC level, but it isthe ISR
programmer's responsibility to know the timing requirements of each device when an ISR runs with either the
same level or all interrupts disabled.

The embedded systems programmer, when designing and implementing an 1SR, should be aware of the interrupt
frequency of each device that can assert an interrupt. Table 10.1 contains a column called Maximum Frequency,
which indicates how often a device can assert an interrupt when the device operates at maximum capacity. The
allowed duration for an ISR to execute with interrupts disabled without affecting the system can be inferred
from Table 10.1.

Without going into detail, an | SR, when executing with interrupts disabled, can cause the system to miss
interrupts if the | SR takes too long. Interrupt miss isthe situation in which an interrupt is asserted but the
processor could not record the occurrence due to some busy condition. The interrupt service routine, therefore,
isnot invoked for that particular interrupt occurrence. Thisissueistypicaly true for a device that uses the
edge-triggering mechanism to assert interrupts. The edge-triggering mechanism is discussed in "'The Nature of
Spurious I nterrupts on page 163, section 10.6.

The RTOS kernel scheduler cannot run when an ISR disables al system interrupts whileit runs. Asindicated
earlier, interrupt processing has higher priority than task processing. Therefore, rea-time tasks that have
stringent deadlines can also be affected by a poorly designed ISR.

Figure 10.9 illustrates a number of concepts as they rel ateT oto asingleinterrupt. In Figure 10.9, thevalue of TAis
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Figure 10.9: Exception timing.



Theinterrupt latency, TB, refersto the interval between the time when the interrupt is raised and the time when
the ISR beginsto execute. Interrupt latency is attributed to:

The amount of time it takes the processor to acknowledge the interrupt and perform theinitial
housekeeping work.

A higher priority interrupt is active at the time.

Theinterrupt is disabled and then later re-enabled by software.

Thefirst case is dways a contributing factor to interrupt latency. As can be seen, interrupt latency can be
unbounded. Therefore, the response time can a so be unbounded. The interrupt latency is outside the control of
the ISR. The processing time TC, however, is determined by how the ISR isimplemented.

Theinterrupt responsetimeis TD = TB + TC.

It is possible for the entire processing to be done within the context of the interrupt, that is, with interrupts
disabled. Notice, however, that the processing time for a higher priority interrupt is a source of interrupt latency
for the lower priority interrupt. Another approach is to have one section of ISR running in the context of the
interrupt and another section running in the context of atask. The first section of the ISR code services the
device so that the service request is acknowledged and the deviceis put into a known operational state so it can
resume operation. This portion of the ISR packages the device service request and sendsiit to the remaining
section of the ISR that executes within the context of atask. Thislatter part of the ISR istypically implemented
as a dedicated daemon task.

There are two main reasons to partition the ISR into two pieces. One is to reduce the processing time within the
interrupt context. The other is a bit more complex in that the architecture treats the interrupt as having higher
priority than arunning task, but in practice that might not be the case. For example, if the device that controls the
blinking of an LED reports afailure, it is definitely lower in priority than atask that must send a communication
reply to maintain its connection with the peer. If the ISR for this particular interrupt were partitioned into two
sections, the daemon task that continues the LED interrupt processing can have alower task priority than the
other task. This factor alows the other hi gltlgr mm_ arity task to complete with limited impact. Figure 10.10
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Figure 10.10: Interrupt processing in two contexts.

The benefits to this concept are the following:

Lower priority interrupts can be handled with less priority than more critical tasks running in the system.



This approach reduces the chance of missing interrupts.

This approach affords more concurrency because devices are being serviced minimally so that they can
continue operations while their previous requests are accumulated without loss to the extent allowed by
the system.

On the other hand, the interrupt response time increases, because now the interrupt responsetimeis TD = TB +
TC+ TE + TF. Theincreasein response time is attributed to the scheduling delay, and the daemon task might
haveto yield to higher priority tasks.

The scheduling delay happens when other higher priority tasks are either running or are scheduled to run. The
scheduling delay also includes the amount of time needed to perform a context switch after the daemon task is
moved from the ready queue to the run queue.

In conclusion, the duration of the ISR running in the context of the interrupt depends on the number of interrupts
and the frequency of each interrupt source existing in the system. Although general approaches to designing an
ISR exist, no one solution exists to implement an ISR so that it worksin all embedded designs. Rather the
embedded systems developer must design an ISR according to the considerations discussed in this section.

General Guides

On architectures where interrupt nesting is allowed:

An ISR should disable interrupts of the same leve if the ISR is non-reentrant.

An ISR should mask all interruptsif it needs to execute a sequence of code as one atomic operation.

An ISR should avoid calling non-reentrant functions. Some standard library functions are non-reentrant,
such as many implementations of malloc and printf. Because interrupts can occur in the middle of task
execution and because tasks might be in the midst of the "malloc™ function call, the resulting behavior can
be catastrophic if the ISR calls this same non-reentrant function.

An ISR must never make any blocking or suspend calls. Making such acall might hat the entire system.

If an ISR is partitioned into two sections with one section being a daemon task, the daemon task does not have a
high priority by default. The priority should be set with respect to the rest of the system.




10.6 The Nature of Spurious Interrupts

A spuriousinterrupt isasigna of very short duration on one of the interrupt input lines, and it is likely caused
by asignal glitch.

An external device uses atriggering mechanism to raise interrupts to the core processor. Two types of
triggering mechanisms are level triggering and edge triggering. Figure 10.11 illustrates the variants of edge
triggers (rising edoe ?r falling edge). Thiskind of triggering istypically used with adigital signal.
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Figure 10.11: Edge triggering on either rising or falling edge.

In contrast, level triggering is commonly used in conjunction with an analog signal. Figure 10.12 illustrates how
level triggering might be implemented in adesign. It isimportant to note that when using level triggering, the
PIC or microcontroller silicon typically defines the trigger threshold value.
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Figure 10.12: Level triggering.

How do spurious interrupts occur? In real-world situations, digital and analog signals are not as clean as
portrayed here. The environment, types of sensors or transducers, and the method in which wiring islaid out in
an embedded design al have a considerable effect on how clean the signal might appear. For example, adigital
signal from a switch might require debouncing, or an analog signal might need filtering. Figure 10.13 provides a
good illustration of how both digital and analog signals can really look. While electronic methods for
debouncing and filtering fall beyond the realm of this book, it isimportant nonethel ess to understand that input
signals, whether for interrupts or other inputs, might not be as clean as a developer might envision them. These
signals, therefoNre, can represent a potential source for sporadic behavior.
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Figure 10.13: Real signals.

As can be seen, one reason for the occurrence of spurious interruptsis unstableness of the interrupt signal.
Spurious interrupts can be caused when the processor detects errors while processing an interrupt request. The
embedded systems programmer must be aware of spurious interrupts and know that spurious interrupts can
occur and that thistype of interrupt must be handled as any other type of interrupts. The default action from the
kernel isusualy sufficient.




10.7 Pointsto Remember

Some points to remember include the following:
Exceptions are classified into synchronous and asynchronous exceptions.
Exceptions are prioritized.
External interrupts belong to the category of asynchronous exceptions.
Externa interrupts are the only exceptions that can be disabled by software.

Exceptions can be nested.

Using a dedicated exception frame is one solution to solving the stack overflow problem that nested
exceptions cause.

Exception processing should consider the overall timing regquirements of the system devices and tasks.

Spurious interrupts can occur and should be handled as any other interrupts.




Chapter 11: Timer and Timer
Services

11.1 Introduction

In embedded systems, system tasks and user tasks often schedule and perform activities after sometime has
elapsed. For example, aRTOS scheduler must perform a context switch of a preset time interval
periodically-among tasks of equal priorities-to ensure execution fairness when conducting a round-robin
scheduling algorithm. A software-based memory refresh mechanism must refresh the dynamic memory every so
often or dataloss will occur. In embedded networking devices, various communication protocols schedule
activities for data retransmission and protocol recovery. The target monitor software sends system information
to the host-based analysistool periodically to provide system-timing diagrams for visualization and debugging.

In any case, embedded applications need to schedule future events. Scheduling future activitiesis accomplished
through timers using timer services.

Timersare an integral part of many real-time embedded systems. A timer isthe scheduling of an event
according to a predefined time value in the future, similar to setting an alarm clock.

A complex embedded system is comprised of many different software modules and components, each requiring
timers of varying timeout values. Most embedded systems use two different forms of timersto drive
time-sengitive activities: hard timers and soft timers. Hard timers are derived from physical timer chips that
directly interrupt the processor when they expire. Operations with demanding requirements for precision or
latency need the predictable performance of a hard timer. Soft timers are software events that are scheduled
through a software facility.

A soft-timer facility allows for efficiently scheduling of non-high-precision software events. A practical design
for the soft-timer handling facility should have the following properties.

efficient timer maintenance, i.e., counting down atimer,

efficient timer installation, i.e., starting atimer, and

efficient timer removal, i.e., stopping atimer.

While an application might require several high-precision timers with resolutions on the order of microseconds
or even nanoseconds, not all of the time requirements have to be high precision. Even demanding applications
also have some timing functions for which resolutions on the order of milliseconds, or even of hundreds of
milliseconds, are sufficient. Aspects of applications requiring timeouts with course granularity (for example,
with tolerance for bounded inaccuracy) should use soft timers. Examples include the Transmission Control
Protocol module, the Real-time Transport Protocol module, and the Address Resolution Protocol module.

Another reason for using soft timersisto reduce system-interrupt overhead. The physical timer chip rateis



usually set so that the interval between consecutive timer interrupts is within tens of milliseconds or even
within tens of microseconds. The interrupt latency and overhead can be substantial and can grow with the
increasing number of outstanding timers. This issue particularly occurs when each timer isimplemented by
being directly interfaced with the physical timer hardware.

This chapter focuses on:
real-time clocks versus system clocks,
programmable interval timers,
timer interrupt service routines,
timer-related operations,

soft timers, and

implementing soft-timer handling facilities.




11.2 Real-Time Clocks and System Clocks

In some references, the term real -time clock is interchangeable with the term system clock . Within the context
of this book, however, these terminol ogies are separate, as they are different on various architectures.

Redl-time clocks exist in many embedded systems and track time, date, month, and year. Commonly, they are
integrated with battery-powered DRAM as shown in Figure 11.1. Thisintegrated real-time clock becomes

independent of the CPU and the programmable interval ti m&,_ making the maintenance of rea time between
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system power cycles possible.
Figure 11.1: A real-time clock.

Thejob of the system clock isidentical to that of the real-time clock: to track either real-time or elapsed time
following system power up (depending on implementation). The initial value of the system clock istypically
retrieved from the real-time clock at power up or is set by the user. The programmable interval timer drives the
system clock, i.e. the system clock incrementsin value per timer interrupt. Therefore, an important function
performed at the timer interrupt is maintai mw ng the system clock, as shown in Figure 11.2.

input clock

Initialzes sysiem clock

Figure 11.2: System clock initialization.




11.3 Programmable Interval Timers

The programmable interval timer (PIT), aso known as the timer chip , isadevice designed mainly to function
as an event counter, elapsed time indicator, rate-controllable periodic event generator, as well as other
applications for solving system-timing control problems.

The functionality of the PIT iscommonly incorporated into the embedded processor, whereit iscalled an
on-chip timer. Dedicated stand-alone timer chips are available to reduce processor overhead. As different as
the various timer chips can be, some general characteristics exist among them. For example, timer chips feature
an input clock source with afixed frequency, as well as a set of programmable timer control registers. The timer
interrupt rate isthe number of timer interrupts generated per second. The timer interrupt rateis calculated as a
function of the input clock frequency and is set into atimer control register.

A related value is the timer countdown value, which determines when the next timer interrupt occurs. Itis
loaded in one of the timer control registers and decremented by one every input clock cycle. The remaining
timer control registers determine the other modes of timer operation, such as whether periodic timer interrupts
are generated and whether the countdown value should be automatically reloaded for the next timer interrupt.

Customized embedded systems come with schematics detailing the interconnection of the system components.
From these schematics, a developer can determine which external components are dependent on the timer chip
astheinput clock source. For example, if atimer chip output pin interconnects with the control input pin of the
DMA chip, the timer chip controlsthe DRAM refresh rate.

Timer-chip initialization is performed as part of the system startup. Generally, initialization of the timer chip
involves the following steps:

Resetting and bringing the timer chip into a known hardware state.

Calculating the proper value to obtain the desired timer interrupt frequency and programming this value
into the appropriate timer control register.

Programming other timer control registersthat are related to the earlier interrupt frequency with correct
values. This step is dependent on the timer chip and is specified in detail by the timer chip hardware
reference manual.

Programming the timer chip with the proper mode of operation.
Installing the timer interrupt service routine into the system.

Enabling the timer interrupt.

The behavior of the timer chip output is programmabl e through the control registers, the most important of
which isthe timer interrupt-rate register (TINTR), which isasfollows:

TINTR= F(X)



where x = frequency of theinput crystal

Manufacturers of timer chips provide this function and the information is readily available in the programmer's
reference manual.

The timer interrupt rate equals the number of timer interrupt occurrences per second. Each interrupt is called a
tick, which represents a unit of time. For example, if the timer rate is 100 ticks, each tick represents an elapsed
time of 10 milliseconds.

The periodic event generation capability of the PIT isimportant to many real-time kernels. At the heart of many
real-time kernels is the announcement of the timer interrupt occurrence, or the tick announcement, from the ISR
to the kernel, aswell asto the kernel scheduler, if one exists. Many of these kernel schedulers run through their
algorithms and conduct task scheduling at each tick.




11.4 Timer Interrupt Service Routines

Part of the timer chip initialization involvesinstalling an interrupt service routine (ISR) that is called when the
timer interrupt occurs. Typically, the ISR performs these duties:

Updating the system clock -Both the absol ute time and el apsed time is updated. Absolute time istime
kept in calendar date, hours, minutes, and seconds. Elapsed time isusually kept in ticks and indicates
how long the system has been running since power up.

Calling aregistered kernd function to notify the passage of a preprogrammed period-For the
following discussion, the registered kernel function is called announce_time_tick.

Acknowledging theinterrupt, reinitializing the necessary timer control register(s), and returning
from interrupt.

The announce_time _tick function isinvoked in the context of the ISR; therefore, all of the restrictions placed on
an ISR are applicable to announce_time tick. In reality, announce _time tick is part of thetimer ISR. The
announce_time_tick function is called to notify the kernel scheduler about the occurrence of atimer tick.
Equally important is the announcement of the timer tick to the soft-timer handling facility. These concepts are
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Figure 11.3: Stepsin servicing the timer interrupt.

illustrated in Figure 11.3.

The soft-timer handling facility is responsible for maintaining the soft timers at each timer tick.




11.5 A Modd for Implementing the Soft-Timer
Handling Facility

The functions performed by the soft-timer facility, called the timer facility from now on, include:

allowing applications to start atimer,

allowing applications to stop or cancel a previously installed timer, and

internally maintaining the application timers.

The soft-timer facility is comprised of two components: one component lives within the timer tick ISR and the
other component livesin the context of atask.

This approach is used for several reasons. If all of the soft-timer processing is done with the ISR and if the
work spans multiple ticks (i.e., if the timer tick handler does not complete work before the next clock tick
arrives), the system clock might appear to drift as seen by the software that tracks time. Worse, the timer tick
events might be lost. Therefore, the timer tick handler must be short and must be conducting the least amount of
work possible. Processing of expired soft timersis delayed into a dedicated processing task because
applications using soft timers can tolerate a bounded timer inaccuracy. The bounded timer inaccuracy refersto
the imprecision the timer may take on any value. Thisvalue is guaranteed to be within a specific range.

Therefore, aworkable model for implementing a soft-timer handling facility is to create a dedicated processing
task and call it aworker task, in conjunction with its counter part that is part of the system timer ISR. The ISR
counterpart is given afictitious name of 1SR _timeout_fn for this discussion.

The system timer chip is programmed with a particular interrupt rate, which must accommodate various aspects

of the system operation. The associated timer tick granularity is typically much smaller than the granularity

required by the application-level soft timers. The ISR timeout fn function must work with this value and notify
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Figure 11.4: A model for soft-timer handling facility.

In the following example, assume that an application requires three soft timers. The timeout values equal
200ms, 300ms, and 500ms. The least common denominator is 100ms. If each hardware timer tick represents
10ms, then 100ms trandates into a countdown value of 10. The ISR _timeout_fn keeps track of this countdown
value and decrementsit by one during each invocation. The ISR_timeout_fn notifies the worker task by a"give'
operation on the worker task's semaphore after the countdown value reaches zero, effectively allowing the task
to be scheduled for execution. The ISR_timeout_fn then reinitializes the countdown value back to 10. This
concept isillustrated in Figure 11.4.

In the I SR-to-processing-task model, the worker task must maintain an application-level, timer-countdown table



based on 100ms granularity. In this example, the timer table has three countdown values: 2, 3, and 5
representing the 200ms, 300ms, and the 500ms application-requested timers. An application-installed,
timer-expiration function is associated with each timer. This concept isillustrated in Figure 11.5.
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Figure 11.5: Servicing the timer interrupt in the task context.

The three soft timers, which are smply called timers unless specified otherwise, are decremented by the
worker task each time it runs. When the counter reaches zero, the application timer has expired. In this example,
the 200ms timer and the associated function App_timeout_fn_1, which the application installs, isinvoked. As
shownin Figures 11.4 and 11.5, asingle I SR-level timer drives three application timers at the task-level,
providing a good reason why these timers are called soft timers. The decrease in the number of ISR timers
installed improves the overall system performance.

These application-installed timers are called soft timers because processing is not synchronized with the
hardware timer tick. It isagood ideato explore this concept further by examining possible delays that can
occur along the delivery path of the timer tick.

11.5.1 Possible Processing Delays

Thefirst delay isthe event-driven, task-scheduling delay. As shown in the previous example, the maintenance
of soft timersis part of ISR_timeout_fn and involves decrementing the expiration time value by one. When the
expiration time reaches zero, the timer expires and the associated function isinvoked. Because ISR_timeout_fn
ispart of the ISR, it must perform the smallest amount of work possible and postpone maor work to alater
stage outside the context of the ISR. Typica implementations perform real work either insde aworker task that
is adedicated daemon task or within the application that originally installed the timer. The minimum amount of
work completed within the ISR by the installed function involves triggering an asynchronous event to the
worker task, which typically trandates into the kernel call event_send, should one exist. Alternatively, the
triggering can aso trandate into the release of a semaphore on which the worker task is currently blocked. The
notification delay caused by event generation from the ISR to the daemon task isthe first level of delay, as
shownin Figure 11.6. Note that the hypothetical kernel function event send and the semaphore release function
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Figure 11.6: Level 1 delays-timer event notification delay.

The second delay is the priority-based, task-scheduling delay. In atypica RTOS, tasks can execute at different
levels of execution priorities. For example, aworker task that performs timer expiration-related functions might
not have the highest execution priority. In a priority-based, kernel-scheduling scheme, aworker task must wait
until al other higher priority tasks complete execution before being allowed to continue. With around-robin
scheduler, the worker task must wait for its schedulina cycle in order to execute. This proc&es represents the
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Figure 11.7: Level 2 delays-priority-based, task-scheduling delays.

Another delay isintroduced when an application installs many soft timers. Thisissueis explored further in the
next section when discussing the concept of timing wheels.



11.5.2 Implementation Consider ations

A soft-timer facility should allow for efficient timer insertion, timer deletion and cancellation, and timer update.
These requirements, however, can conflict with each other in practice. For example, imagine the linked
list-timer implementation shown in Figure 11.8. The fastest way to start atimer isto insert it either at the head
of_tT_e timer list or at thetail of the timer list if the timer entry data structure contains a double-linked list.

Head |———@—— naxt

Tad -4 . previous L] 1 previcus

Expiralion = 20 E D:JI'A:-’\ IB
calout funcion t.allomr clion ﬁ
.
¥
timer insertion point timer nscftqﬂ poind

Figure 11.8: Maintaining soft timers.

Because the timer list is not sorted in any particular order, maintaining timer ticks can prove costly. Updating
the timer list at each tick requires the worker task to traverse the entire linked list and update each timer entry.
When the counter reaches zero, the callout function isinvoked. A timer handle is returned to the applicationin a
successful timer installation. The cancellation of atimer also requires the worker task to traverse the entire list.
Each timer entry is compared to the timer handle, and, when amatch isfound, that particular timer entry is
removed from the timer list.

Asshownin Figure 11.9, while timer installation can b|e performef in cor|15talnt tl‘me| timer Cancellatlon and
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timer update might require O(N) in the worst case. T """""""""""""""""""""""""""""""""""""""""" > |
Figure 11.9: Unsorted soft timers.

Sorting expiration timesin ascending order results in efficient timer bookkeeping. In the example, only the first
timer-entry update is necessary, because al the other timers are decremented implicitly. In other words, when
inserting new timers, the timeout value is modified according to the first entry before inserting the timer into the
list.

Asshown in Figure 11.10, while timer bookkeeping is performed in constant time, timer installation requires
search and insertion. The cost is O(log(N)), where N is the number of entriesin the timer list. The cost of timer
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Figure 11.10: Sorted soft timers.




11.6 Timing Wheels

Asshownin Figure 11.11, the timing wheel is a construct with afixed-size array in which each slot represents
aunit of time with respect to the precision of the soft-timer facility. The timing wheel approach has the
advantage of the sorted timer list for updating the timers efficiently, and it also provides efficient operations for
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each time slot
containg a list of
timers to expire

at this time

future

timer installation and cancellation.
Figure 11.11: Timing wheel.

The soft-timer facility installs a periodic timeout (aclock tick) using the underlying timer hardware. This
hardware-based periodic timer, drives all of the soft timersinstalled within the facility. The frequency of the
timeout determines the precision of the soft-timer facility. For example, if the precision defines atick
occurrence every 50ms, each dot represents the passing of 50ms, which isthe smallest timeout that can be
installed into the timer facility. In addition, adoubly linked list of timeout event handlers (also named callback
functions or callbacks for short) is stored within each dot, which isinvoked upon timer expiration. Thislist of
timers represents events with the same expiration time.
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Each timer slot isrepresented in Figure 11.12.
Figure 11.12: Timeout event handlers.

The clock dial increments to the next time slot on each tick and wraps to the beginning of the time-dot array
when it increments past the final array entry. Theidea of the timing wheel is derived from this property.
Therefore, when installing a new timer event, the current location of the clock dial is used as the reference point
to determine the time dot in which the new event handler will be stored. Consider the following example as
depicted in Figure 11.13. Assume each time s ot represents the passing of 50ms, which means that 50ms has
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elapsed between ticks. time it - ms
Figure 11.13: Ingtalling a timeout event.
Thetime dot marked +200 isthe dot in which to store an event handler if the developer wants to schedule a

200ms timeout in the future. The location of the clock dial isthe 'beginning of time' on the time line, in other
words, the reference point. At aminimum, the timer handle returned to the calling application is the array index.

11.6.1 I ssues



A number of issues are associated with the timing wheel approach. The number of dotsin the timing wheel has
alimit, whatever that might be for the system. The examplein Figure 11.13 makes this problem obvious. The
maximum schedulable event is 350ms. How can a400mstimer be scheduled? This issue causes an overflow
condition in the timing wheel. One approach isto deny installation of timers outside the fixed range. A better
solution isto accumulate the events causing the overflow condition in atemporary event buffer until the clock
dial has turned enough so that these events become schedulable. This solutionisillustrated in Figure 11.14.
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Figure 11.14: Timing wheel overflow event buffer.

For example, in order to schedule a 400ms timeout when the clock dial is at location 1, this event must be saved
in the event overflow buffer until the clock dial reacheslocation 2. To schedule a 500ms timer when clock dia
isat location 1, this event must be saved in the event overflow buffer until the clock dial reacheslocation 3.
The expired events at location 2 and location 3 must be serviced first, and then the new eventsinstalled. The
event overflow buffer must be examined to see if new events need to be scheduled when the clock dial moves at
each clock tick to the next dot. This process implies that the events in the overflow buffer must be sorted in
increasing order. New events are inserted in order and can be expensive if the overflow buffer containsalarge
number of entries.

Another issue associated with the timing wheel approach isthe precision of the installed timeouts. Consider the
situation in which a 150ms timer event is being scheduled while the clock is ticking but before the tick
announcement reaches the timing wheel. Should the timer event be added to the +150ms dot or placed in the
+200ms slot? On average, the error is approximately half the size of thetick. In this example, the error is about
25ms.

One other important issue relates to the invocation time of the callbacksinstalled at each time dot. In theory, the
callbacks should all be invoked at the same time at expiration, but in reality, thisisimpossible. The work
performed by each callback is unknown; therefore, the execution length of each callback is unknown.
Consequently, no guarantee or predictable measures exist concerning when a callback in alater position of the
list can be called, even in aworst-case scenario. This issue introduces non-determinism into the system and is
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Figure 11.15: Unbounded soft-timer handler invocation.

Event handler 1 isinvoked at t1 when the timeout has just expired. Similarly, event handler nisinvoked at tn
when the previous (n -1) event handlers have finished execution. The interval x and y is non-deterministic
because the length of execution of each handler is unknown. These intervals are al so unbounded.

Ideally, the timer facility could guarantee an upper bound; for example, regardless of the number of timers
already installed in the system, event handler n isinvoked no later than 200ms from the actual expiration time.

This problem is difficult, and the solution is application specific.



11.6.2 Hierarchical Timing Whedls

The timer overflow problem presented in the last section can be solved using the hierarchical timing wheel
approach.

The soft-timer facility needs to accommodate timer events spanning arange of values. This range can be very
large. For example accommodating timers ranging from 100ms to 5 minutes requires atiming wheel with 3,000
(5 760 ?10) entries. Because the timer facility needs to have agranularity of at least 100ms and thereisasingle
array representing the timing whee,

10 7100ms =1 sec
10 entries/sec

60 sec = 1 minute
60 ?10 entries/ min

therefore:

5 260 710 = total number of entries needed for the timing wheel with agranularity of 100ms.

A hierarchical timing wheel issimilar to adigital clock. Instead of having a single timing wheel, multiple
timing wheels are organized in a hierarchical order. Each timing wheel in the hierarchy set has a different
granularity. A clock dial is associated with each timing wheel. The clock dial turns by one unit when the clock
dial at the lower level of the hierarchy wraps around. Using a hierarchical timing wheel requires only 75 (10 +
60 + 5) entriesto allow for timeouts with 100ms resolution and duration of up to 5 minutes.

With ahierarchical timing wheels, there are multiple arrays, therefore

10 7100ms =1 sec
10 entries/sec

wlnl=|2

-
T
!

unit = 1 min

the 1st array (leftmost array as shown in Figure 11.16)
Figure 11.16: A hierarchical timing wheel.

60 sec = 1 minute

60 entries/ min

the 2nd array (middle array shown in Figure 11.16)

5 entriesfor 5 minutes
3rd array

therefore:
5+ 60 + 10 = total number of entries needed for the hierarchal timing wheels.

The reduction in space alows for the construction of higher precision timer facilities with alarge range of
timeout values. Figure 11.16 depicts this concept.



For example, it is possible to install timeouts of 2 minutes, 4 seconds, and 300 milliseconds. The timeout
handler isinstalled at the 2-minute slot first. The timeout handler determines that there are still 4.3 secondsto
go when the 2 minutesis up. The handler installsitself at the 4-second timeout slot. Again, when 4 seconds have
elapsed, the same handler determines that 300 milliseconds are | eft before expiring the timer. Finally, the
handler isreinstalled at the 300-millisecond timeout slot. The real required work is performed by the handler
when the last 300ms expire.




11.7 Soft Timersand Timer Related Operations

Many RTOSs provide a set of timer-related operations for external software components and applications
through API sets. These common operations can be cataloged into these groups:

group 1-provides low-level hardware related operations,

group 2-provides soft-timer-related services, and

group 3-provides access either to the storage of the real-time clock or to the system clock.

Not all of the operationsin each of these three groups, however, are offered by all RTOSs, and some RTOSs
provides additional operations not mentioned here.

Thefirst group of operationsis developed and provided by the BSP developers. The group is considered
low-level system operations. Each operation in the group is given afictitious function name for this discussion.
Actua function names are implementation dependent.

Table 11.1: Group 1 Operations.

Typical Operations

Description

sys timer_enable

Enables the system timer chip interrupts. As soon as this operation is
invoked, the timer interrupts occur at the preprogrammed frequency,
assuming that the timer chip has been properly initialized with the
desired values. Only after this operation is complete can kernel task
scheduling take place.

sys timer_disable

Disables the system timer chip interrupts. After this operationis
complete, the kernel scheduler isno longer in effect. Other
system-offered services based on time ticks are disabled by this
operation as well.

sys timer_connect

Installs the system timer interrupt service routine into the system
exception vector table. The new timer ISR isinvoked automatically on
the next timer interrupt. The installed function is either part of the BSP
or the kernel code and represents the 'timer ISR’ depicted in Figure 11.3
, page 172.

Input Parameters:

1. New timer interrupt service routine

sys timer_getrate

Returns the system clock rate as the number of ticks per second that the
timer chip is programmed to generate.

Output Parameter:

1. Ticks per second




sys timer_setrate Sets the system clock rate as the number of ticks per second the timer
chip generates. Internally, this operation reprogramsthe PIT to obtain
the desired frequency.

Input Parameters:

1. Ticks per second

sys timer_getticks Returns the elapsed timer ticks since system power up. Thisfigureis
the total number of elapsed timer ticks since the system was first
powered on.

Output Parameters:

1. Total number of elapsed timer ticks

The second group of timer-related operations includes the core timer operations that are heavily used by both
the system modules and applications. Either an independent timer-handling facility or abuilt-in one that is part
of the kerndl offers these operations. Each operation in the group is given afictitious function name for this
discussion. Actual function names are implementation dependent.

Thetimer_create and timer_start operations allow the caler to start atimer that expires some timein the future.
The caller-supplied function isinvoked at the time of expiration, which is specified as atime relative with
respect to when the timer_start operation isinvoked. Through these timer operations, applications can install
soft timers for various purposes. For example, the TCP protocol layer can install retransmission timers, the [P
protocol layer can install packet-reassembly discard timers, and a device driver can poll an 1/0 device for
input at predefined intervals.

Table 11.2: Group 2 Operations.

Typical Operations Description

timer_create Creates atimer. This operation allocates a soft-timer structure. Any software
module intending to install a soft timer must first create atimer structure. The
timer structure contains control information that allows the timer-handling
facility to update and expire soft timers. A timer created by this operation
refersto an entry in the soft-timers array depicted in Figure 11.3.

Input Parameter:

Expiration time

User function to be called at the timer expiration

Output Parameter:

An 1D identifying the newly created timer structure

Note: Thistimer structure isimplementation dependent. The returned timer
ID is also implementation dependent.

timer_delete Deletes atimer. This operation deletes a previously created soft timer,
freeing the memory occupied by the timer structure.




Input Parameter:

1. An D identifying a previously created timer structure

Note: Thistimer ID isimplementation dependent.

timer_start

Starts atimer. This operation installs a previously created soft timer into the
timer-handling facility. The timer begins running at the completion of this
operation.

Input Parameter:

1. An D identifying a previously created timer structure

timer_cancel

Cancels a currently running timer. This operation cancels atimer by removing
the currently running timer from the timer-handling facility.

Input Parameter:

1. An D identifying a previously created timer structure

Thethird group is mainly used by user-level applications. The operations in this group interact either with the
system clock or with the real-time clock. A system utility library offers these operations. Each operation in the
group is given afictitious function name for this discussion. Actua function names are implementation

dependent.
Table 11.3: Group 3 Operations.

Typical Operations

Description

clock_get_time

Gets the current clock time, which is the current running value either
from the system clock or from the real-time clock.

Output Parameter:

A time structure containing seconds, minutes, or hoursl

clock set_time

Sets the clock to a specified time. The new timeis set either into the
system clock or into the real-time clock.

Input Parameter:

A time structure containing seconds, minutes, or hoursl

1. The time structure is implementation dependent.




11.8 Pointsto Remember

Some points to remember include the following:

Hardware timers (hard timers) are handled within the context of the ISR. The timer handler must conform
to genera restrictions placed on the ISR.

The kernel scheduler depends on the announcement of time passing per tick.
Soft timers are built on hard timers and are less accurate because of various delays.

A soft-timer handling facility should allow for efficient timer installation, cancellation, and timer
bookkeeping.

A soft-timer facility built using the timing-wheel approach provides efficient operations for installation,
cancellation, and timer bookkeeping.
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Chapter 12: 1/0 Subsystem

12.1 Introduction

All embedded systems include some form of input and output (1/0) operations. These I/O operations are
performed over different types of 1/0 devices. A vehicle dashboard display, atouch screen on aPDA, the hard
disk of afile server, and a network interface card are all examples of 1/0 devices found in embedded systems.
Often, an embedded system is designed specifically to handle the special requirements associated with a
device. A cell phone, pager, and a handheld MP3 player are afew examples of embedded systems built
explicitly to deal with I/O devices.

I/O operations are interpreted differently depending on the viewpoint taken and place different requirements on
the level of understanding of the hardware details.

From the perspective of a system software developer, 1/0 operations imply communicating with the device,
programming the device to initiate an 1/0 request, performing actual data transfer between the device and the
system, and notifying the requestor when the operation completes. The system software engineer must
understand the physical properties, such as the register definitions, and access methods of the device. Locating
the correct instance of the deviceis part of the device communications when multiple instances of the same
device are present. The system engineer is also concerned with how the device isintegrated with rest of the
system. The system engineer islikely adevice driver developer because the system engineer must know to
handle any errors that can occur during the I/O operations.

From the perspective of the RTOS, I/O operations imply locating the right device for the I/O request, locating
the right device driver for the device, and issuing the request to the device driver. Sometimesthe RTOS is
required to ensure synchronized access to the device. The RTOS must facilitate an abstraction that hides both
the device characteristics and specifics from the application developers.

From the perspective of an application developer, the goa isto find asmple, uniform, and elegant way to
communicate with all types of devices present in the system. The application developer is most concerned with
presenting the data to the end user in auseful way.

Each perspectiveis equally important and is examined in this chapter. This chapter focuses on:

basic hardware 1/0 concepts,

the structure of the I/O subsystem, and

a specific implementation of an I/O subsystem.




12.2 Basic |/0O Concepts

The combination of 1/0O devices, associated device drivers, and the I/O subsystem comprises the overal 1/0O
system in an embedded environment. The purpose of the I/O subsystem isto hide the device-specific
information from the kernel aswell as from the application developer and to provide a uniform access method
to the peripheral 1/0 devices of the system. This section discusses some fundamenta concepts from the
perspective of the device driver developer.

Figure 12.1 illustrates the 1/O subsystem in relation to the rest of the system in alayered software model. As
shown, each descending layer adds additional detailed information to the architecture needed to manage agiven
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/O Subsystem
Davice Drivers
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i D Device Hardware Spacific Details
device.

Figure 12.1: 1/O subsystem and the layered model.

12.2.1 Port-Mapped vs. Memory-Mapped |/O and DM A

The bottom layer contains the 1/O device hardware. The 1/0O device hardware can range from low-bit rate serial
linesto hard drives and gigabit network interface adaptors. All 1/O devices must be initialized through device
control registers, which are usually external to the CPU. They are located on the CPU board or in the devices
themselves. During operation, the device registers are accessed again and are programmed to process data
transfer requests, which is called device control. To access these devices, it is necessary for the developer to
determineif the deviceis port mapped or memory mapped. This information determines which of two methods,
port-mapped I/0 or memory-mapped 1/0, is deployed to access an 1/0 device.

When the 1/0O device address space is separate from the system memory address space, special processor
instructions, such asthe IN and OUT instructions offered by the Intel processor, are used to transfer data
between the 1/O device and a microprocessor register or memory.

The 1/O device addressis referred to as the port number when specified for these special instsgycti ons. This
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form of 1/Ois called port-mapped 1/0, as shown in Figure 12.2. 0x0000

Figure 12.2: Port-mapped 1/0.

The devices are programmed to occupy arange in the 1/O address space. Each deviceis on adifferent 1/0 port.
The 1/0 ports are accessed through special processor instructions, and actual physical access is accomplished
through special hardware circuitry. This1/0O method is also called isolated 1/0O because the memory spaceis
isolated from the I/O space, thus the entire memory address space is available for application use.

The other form of device access is memory-mapped 1/0O, as shown in Figure 12.3. In memory-mapped 1/O, the
device addressis part of the system memory address space. Any machine instruction that is encoded to transfer



data between a memory location and the processor or between two memory locations can potentially be used to
access the /0 device. The I/O deviceistreated asif it were another memory location. Because the I/O address

Space occupies arange in the system memory address space, this region of the memory address space is not
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Figure 12.3: Memory-mapped 1/0.

The memory-mapped /O space does not necessarily begin at offset 0 in the system address space, asillustrated
in Figure 12.3. It can be mapped anywhere inside the address space. This issue is dependent on the system
implementation.

Commonly, tables describing the mapping of adevice'sinternal registers are available in the device hardware
data book. The device registers appear at different offsetsin this map. Sometimes the information is presented
in the 'base + offset’ format. Thisformat indicates that the addresses in the map are relative, i.e., the offset must
be added to the start address of the 1/O space for port-mapped 1/0 or the offset must be added to the base
address of the system memory space for memory-mapped 1/0 in order to access a particular register on the
device.

The processor has to do some work in both of these I/0 methods. Data transfer between the device and the
system involves transferring data between the device and the processor register and then from the processor
register to memory. The transfer speed might not meet the needs of high-speed 1/0 devices because of the
additional data copy involved. Direct memory access (DMA) chips or controllers solve this problem by
allowing the device to access the memory directly without involving the processor, as shown in Figure 12.4.
The processor is used to set up the DMA controller before a data transfer operation begins, but the processor is
bypassed during data transfer, regardless of whether it isaread or write operation. The transfer speed depends
on the transfer speed of the 1/O device, the speed of the memory device, and the speed of the DMA controller.
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Figure 12.4: DMA 1/0.
In essence, the DMA controller provides an aternative data path between the 1/0 device and the main memory.

The processor sets up the transfer operation by specifying the source address, the destination memory address,
and the length of the transfer to the DMA controller.

12.2.2 Character-M ode vs. Block-M ode Devices

|/O devices are classified as either character-mode devices or block-mode devices. The classification refers to
how the device handles data transfer with the system.



Character-mode devices alow for unstructured data transfers. The data transferstypically take place in serial
fashion, one byte at atime. Character-mode devices are usually simple devices, such as the serial interface or
the keypad. The driver buffers the data in cases where the transfer rate from system to the device is faster than
what the device can handle.

Block-mode devices transfer data one block at time, for example, 1,024 bytes per data transfer. The underlying
hardware imposes the block size. Some structure must be imposed on the data or some transfer protocol
enforced. Otherwise an error islikely to occur. Therefore, sometimesit is necessary for the block-mode device
driver to perform additional work for each read or write operation, as shown in Figure 12.5.

| Block mode /O device J ]

Figure 12.5: Servicing awrite operation for a block-mode device.

Asillustrated in Figure 12.5, when servicing awrite operation with large amounts of data, the device driver
must first divide the input data into multiple blocks, each with a device-specific block size. In this example, the
input datais divided into four blocks, of which al but the last block is of the required block size. In practice,
the last partition often is smaller than the normal device block size.

Each block istransferred to the device in separate write requests. The first three are straightforward write
operations. The device driver must handle the last block differently from the first three because the last block
has a different size. The method used to process this last block is device specific. In some cases, the driver
pads the block to the required size. The example in Figure 12.5 is based on a hard-disk drive. In this case, the
devicedriver first performs aread operation of the affected block and replaces the affected region of the block
with the new data. The modified block is then written back.

Another strategy used by block-mode device drivers for small write operationsis to accumulate the datain the
driver cache and to perform the actual write after enough data has accumulated for arequired block size. This
technique a so minimizes the number of device accesses. Some disadvantages occur with this approach. First,
the device driver is more complex. For example, the block-mode device driver for ahard disk must know if the
cached data can satisfy aread operation. The delayed write associated with caching can also cause data loss if
afailure occurs and if the driver is shut down and unloaded ungracefully. Data caching in this case implies data
copying that can result in lower 1/O performance.



12.3 Thel/O Subsystem

Each 1/0O device driver can provide a driver-specific set of 1/0 application programming interfacesto the
applications. This arrangement requires each application to be aware of the nature of the underlying 1/O device,
including the restrictions imposed by the device. The APl set isdriver and implementation specific, which
makes the applications using this API set difficult to port. To reduce this implementation-dependence,
embedded systems often include an 1/0 subsystem.

The 1/0 subsystem defines a standard set of functions for I/O operations in order to hide device peculiarities
from applications. All I/0O device drivers conform to and support this function set because the goal isto provide
uniform 1/0 to applications across a wide spectrum of 1/0 devices of varying types.

The following steps must take place to accomplish uniform I/O operations at the application-level.
1.

The 1/O subsystem definesthe APl s&t.
2.

The device driver implements each function in the set.
The device driver exports the set of functions to the I/O subsystem.

The device driver does the work necessary to prepare the device for use. In addition, the driver sets up an
association between the 1/0 subsystem API set and the corresponding device-specific 1/0 calls.

The device driver |oads the device and makes this driver and device association known to the I/O
subsystem. This action enables the I/0O subsystem to present the illusion of an abstract or virtual instance
of the device to applications.

This section discusses one approach to uniform 1/0. This approach is general, and the goal isto offer insight
into the I/0O subsystem layer and its interaction with the application layer above and the device driver layer
below. Another goal isto give the reader an opportunity to observe how the pieces are put together to provide
uniform /O capability in an embedded environment.

12.3.1 Standard I/O Functions

The 1/0 subsystem presented in the examplein this section defines a set of functions as the standard 1/0 function
set. Table 12.1 lists those functions that are considered part of the set in the general approach to uniform 1/0.
Again, remember that the example approach is used for illustration purposes in describing and discussing the
1/O subsystem in general. The number of functionsin the standard 1/0 API set, function names, and functionality
of each is dependent on the embedded system and implementation. The next few sections put these functionsinto
perspective.

Table 12.1: I/O functions.

Function Description

Create Creates avirtual instance of an I/O device




Destroy Deletes avirtual instance of an I/O device

Open Prepares an I/O device for use.

Close Communicates to the device that its services are no longer required, which typically initiates
device-specific cleanup operations.

Read Reads datafrom an /O device
Write Writes datainto an I/O device
loctl I ssues control commands to the 1/0O device (1/0O control)

Note that all these functions operate on a so-called 'virtual instance' of the 1/0 device. In other words, these
functions do not act directly on the /O device, but rather on the driver, which passes the operations to the I/0
device. When the open, read, write, and close operations are described, these operations should be understood
as acting indirectly on an I/O device through the agency of avirtual instance.

The create function creates a virtual instance of an I/O device in the 1/0O subsystem, making the device available
for subsequent operations, such as open, read, write, and ioctl. Thisfunction gives the driver an opportunity to
prepare the device for use. Preparations might include mapping the device into the system memory space,
allocating an available interrupt request line (IRQ) for the device, installing an ISR for the IRQ, and initializing
the device into aknown state. The driver allocates memory to store instance-specific information for
subsequent operations. A reference to the newly created device instance is returned to the caller.

The destroy function deletes a virtual instance of an 1/O device from the 1/0 subsystem. No more operations are
allowed on the device after this function completes. This function gives the driver an opportunity to perform
cleanup operations, such as un-mapping the device from the system memory space, de-allocating the IRQ, and
removing the ISR from the system. The driver frees the memory that was used to store instance-specific
information.

The open function prepares an 1/O device for subsequent operations, such as read and write. The device might
have been in a disabled state when the create function was called. Therefore, one of the operations that the open
function might perform is enabling the device. Typically, the open operation can also specify modes of use; for
example, a device might be opened for read-only operations or write-only operations or for receiving control
commands. The reference to the newly opened /O device isreturned to the caller. In some implementations, the
1/0 subsystem might supply only one of the two functions, create and open, which implements most of the
functionalities of both create and open due to functional overlaps between the two operations.

The close function informs a previously opened 1/0 device that its services are no longer required. This
process typicaly initiates device-specific cleanup operations. For example, closing a device might causeit to
go to astandby state in which it consumes little power. Commonly, the 1/0 subsystem supplies only one of the
two functions, destroy and close, which implements most of the functionalities of both destroy and close, in the
case where one function implements both the create and open operations.

The read function retrieves data from a previously opened 1/0O device. The caller specifies the amount of datato
retrieve from the device and the location in memory where the datais to be stored. The caller is completely
isolated from the device details and is not concerned with the I/O restrictions imposed by the device.

The write function transfers data from the application to a previously opened 1/0O device. The caler specifies
the amount of datato transfer and the location in memory holding the data to be transferred. Again, the caller is
isolated from the device 1/0 details.



The loctl function is used to manipulate the device and driver operating parameters at runtime.
An application is concerned with only two things in the context of uniform 1/O: the device on which it wishesto

perform 1/0O operations and the functions presented in this section. The 1/0O subsystem exports this API set for
application use.

12.3.2 Mapping Generic Functionsto Driver Functions

Theindividual device drivers provide the actual implementation of each function in the uniform 1/0 API set.
Fiqure 12.6 %is\,’.?.? an ovg_[ylg\nzvmof the relationship between the 1/0O API set and driver internal function set.

[ create() driver_Create ()
| Open () driver_Open ( }
P —>| Resd() | fCResIONS .
| write () driver_Write ()
| Close () driver_Close ()
| toct () driver_loetl ()
| Destroy () driver_Destroy ()

Figure 12.6: 1/0 function mapping.

Asillustrated in Figure 12.6, the 1/0 subsystem-defined APl set needs to be mapped into a function set that is
specific to the device driver for any driver that supports uniform 1/0. The functions that begin with the driver
prefix in Figure 12.6 refer to implementations that are specific to adevice driver. The uniform I/O APl set can
be represented in the C programming language syntax as a structure of function pointers, as shown in the
left-hand side of Listing 12.1.

Listing 12.1: C structure defining the uniform 1/0 APl set.

ef struct

int (*Create)( );
int (*Open) ( );
int (*Read)( );

int (*Wite) ( );
int (*Cose) ();
int (*loctl) ( );
int (*Destroy) ( );
UNI FORM | O DRV;

€ mapping process involvesinitializing each function pointer with the address of an associated internal
driver function, asshown in Listing 12.2. These internal driver functions can have any name as long as they are
correctly mapped.

Listing 12.2: Mapping uniform I/0O API to specific driver functions.

M |1 O DRV ttyl Odrv;

rv.Create = tty_Create;
y rv.Open = tty_Qpen;

ttylGdrv. Read = tty_Read,;

ttylGdrv. Wite = tty Wite;
ttylGdrv. d ose = tty_C ose;
ttylQdrv.loctl = tty_loctl;

ttyl Odrv. Destroy = tty Destroy;

N170 subsystem usually maintains a uniform 1/O driver table. Any driver can be installed into or removed
from this driver table by using the utility functions that the I/O subsystem provides. Figure 12.7 illustrates this
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Figure 12.7: Uniform /O driver table.

Each row in the table represents a unique 1/O driver that supports the defined API set. The first column of the
table is a generic name used to associate the uniform /O driver with a particular type of device. In Figure 12.7,
auniform /O driver is provided for aserial line terminal device, tty. The table element at the second row and
column contains a pointer to the internal driver function, tty Create(). This pointer, in effect, constitutes an
association between the generic create function and the driver-specific create function. The association is used
later when creating virtual instances of a device.

These pointers are written to the table when adriver isinstalled in the I/O subsystem, typically by calling a
utility function for driver installation. When this utility function is called, areference to the newly created
driver table entry is returned to the caller.

12.3.3 Associating Devices with Device Drivers
Asdiscussed in the section on standard 1/0O functions, the create function is used to create avirtua instance of a

device. The I/O subsystem tracks these virtual instances using the device table. A newly created virtual instance
is given aunique name and is inserted into the device table, as shown in Figure 12.8. Fiqure 12.8 also

Croate Dostroy Open Close Head  Write  loctl

illustrates the device tabl€e's relationship to the driver table. Oriver Table
Figure 12.8: Associating devices with drivers.

Each entry in the device table holds generic information, as well as instance-specific information. The generic
part of the device entry can include the unique name of the device instance and a reference to the device driver.
In Figure 12.8, adevice instance name is constructed using the generic device name and the instance number.
The device named ttyO implies that this 1/0 device isa serial terminal device and isthe first instance created in
the system. The driver-dependent part of the device entry is ablock of memory allocated by the driver for each
instance to hold instance-specific data. The driver initializes and maintainsit. The content of thisinformation is
dependent on the driver implementation. The driver isthe only entity that accesses and interprets this data.



A reference to the newly created device entry is returned to the caller of the create function. Subsequent calls to
the open and destroy functions use this reference.




12.4 Pointsto Remember

Some points to remember include the following:

Interfaces between a device and the main processor occur in two ways: port mapped and memory

mapped.

DMA controllers allows data transfer bypassing the main processor.

1/0 subsystems must be flexible enough to handle awide range of 1/0 devices.
Uniform 1/O hides device peculiarities from applications.

The 1/O subsystem maintains a driver table that associates uniform /O calls with driver-specific 1/0
routines.

The 1/0 subsystem maintains a device table and forms an association between this table and the driver
table.
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Chapter 13: Memory
M anagement

13.1 Introduction

Embedded systems devel opers commonly implement custom memory-management facilities on top of what the
underlying RTOS provides. Understanding memory management is therefore an important aspect of developing
for embedded systems.

Knowing the capability of the memory management system can aid application design and help avoid pitfalls.
For example, in many existing embedded applications, the dynamic memory alocation routine, malloc, is called
often. It can create an undesirable side effect called memory fragmentation. This generic memory allocation
routine, depending on its implementation, might impact an application’'s performance. In addition, it might not
support the allocation behavior required by the application.

Many embedded devices (such as PDAS, cell phones, and digital cameras) have alimited number of
applications (tasks) that can runin parallel at any given time, but these devices have small amounts of physical
memory onboard. Larger embedded devices (such as network routers and web servers) have more physical
memory installed, but these embedded systems a so tend to operate in a more dynamic environment, therefore
making more demands on memory. Regardless of the type of embedded system, the common requirements
placed on amemory management system are minimal fragmentation, minimal management overhead, and
deterministic alocation time.

This chapter focuses on:
memory fragmentation and memory compaction,
an example implementation of the malloc and free functions,
fixed-size, pool-based memory management,

blocking vs. non-blocking memory functions, and

the hardware memory management unit (MMU).




13.2 Dynamic Memory Allocation in Embedded
Systems

Chapter 3 shows that the program code, program data, and system stack occupy the physical memory after
program initialization completes. Either the RTOS or the kernel typically uses the remaining physica memory
for dynamic memory alocation. This memory areais caled the heap . Memory management in the context of
this chapter refers to the management of a contiguous block of physical memory, although the concepts
introduced in this chapter apply to the management of non-contiguous memory blocks as well. These concepts
also apply to the management of various types of physica memory. In general, a memory management facility
maintains internal information for a heap in areserved memory area called the control block. Typical interna
information includes:

the starting address of the physical memory block used for dynamic memory allocation,

the overall size of this physical memory block, and

the allocation table that indicates which memory areas are in use, which memory areas are free, and the
size of each free region.

This chapter examines aspects of memory management through an example implementation of the malloc and
free functions for an embedded system.

13.2.1 Memory Fragmentation and Compaction

In the example implementation, the heap is broken into small, fixed-size blocks. Each block has a unit size that
is power of two to ease trandlating a requested size into the corresponding required number of units. In this
example, the unit Size is 32 bytes. The dynamic memory allocation function, malloc, has an input parameter that
specifies the size of the allocation request in bytes. malloc alocates alarger block, which is made up of one or
more of the smaller, fixed-size blocks. The size of thislarger memory block is at least as large as the requested
size; it isthe closest to the multiple of the unit size. For example, if the alocation requests 100 bytes, the
returned block has a size of 128 bytes (4 units x 32 bytes/unit). As aresult, the requestor does not use 28 bytes
of the allocated memory, which is called memory fragmentation. This specific form of fragmentation is called
internal fragmentation because it isinternal to the allocated block.

The allocation table can be represented as a bitmap, in which each bit represents a 32-byte unit. Figure 13.1
shows the states of the allocation table after a series of invocations of the malloc and free functions. In this
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Figure 13.1: States of amemory allocation map.



Step 6 shows two free blocks of 32 bytes each. Step 7, instead of maintaining three separate free blocks, shows
that all three blocks are combined to form a 128-byte block. Because these blocks have been combined, afuture
allocation request for 96 bytes should succeed.

Figure 13.2 shows another example of the state of an allocation table. Note that two free 32-byte blocks are
shown. One block is at address 0x10080, and the other at address 0x101C0, which cannot be used for any
memory allocation requests larger than 32 bytes. Because these isolated blocks do not contribute to the
contiguous free space needed for alarge allocation request, their existence makes it more likely that alarge
request will fail or take too long. The existence of these two trapped blocksis considered external
fragmentation because the fragmentation exists in the table, not within the blocks themselves. One way to
eliminate this type of fragmentation isto compact the area adjacent to these two blocks. The range of memory
content from address Ox100A0 (immediately following the first free block) to address Ox101BF (immediately
preceding the second free block is shifted 32 bytes lower in memory, to the new range of 0x10080 to 0x1019F,
which effectively combines the two free blocks into one 64-byte block. This new free block is still considered
memory fragmentation if future allocations are potentially larger than 64 bytes. Therefore, memory compaction
continues Lﬂ}i Io ﬂnl ofume free DtzIEancks are combined into one large chunk.
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Figure 13.2: Memory allocation map with possible fragmentation.

Severa problems occur with memory compaction. It istime-consuming to transfer memory content from one
location to another. The cost of the copy operation depends on the length of the contiguous blocksin use. The
tasks that currently hold ownership of those memory blocks are prevented from accessing the contents of those
memory locations until the transfer operation completes. Memory compaction is amost never done in practice
in embedded designs. The free memory blocks are combined only if they are immediate neighbors, asillustrated

in Figure 13.1.

Memory compaction is alowed if the tasks that own those memory blocks reference the blocks using virtual
addresses. Memory compaction is not permitted if tasks hold physical addresses to the allocated memory
blocks.

In many cases, memory management systems should also be concerned with architecture-specific memory
alignment requirements. Memory alignment refers to architecture-specific constraints imposed on the address
of adataitem in memory. Many embedded processor architectures cannot access multi-byte data items at any
address. For example, some architecture requires multi-byte data items, such as integers and long integers, to be
alocated at addresses that are a power of two. Unaligned memory addresses result in bus errors and are the
source of memory access exceptions.

Some conclusions can be drawn from this example. An efficient memory manager needs to perform the
following chores quickly:

Determineif afree block that islarge enough exists to satisfy the allocation request. Thiswork is part of
the malloc operation.

Update the internal management information. Thiswork is part of both the malloc and free operations.



Determineif the just-freed block can be combined with its neighboring free blocks to form alarger piece.
Thiswork is part of the free operation.

The structure of the alocation table is the key to efficient memory management because the structure determines
how the operations listed earlier must be implemented. The alocation tableis part of the overhead because it
occupies memory space that is excluded from application use. Consequently, one other requirement isto
minimize the management overhead.

13.2.2 An Example of malloc and free

Thefollowing is an example implementation of malloc's alocation algorithm for an embedded system. A static
array of integers, called the allocation array, is used to implement the allocation map. The main purpose of the
allocation array isto decide if neighboring free blocks can be merged to form alarger free block. Each entry in
this array represents a corresponding fixed-size block of memory. In this sense, thisarray is similar to the map
shown in Figure 13.2, but this one uses a different encoding scheme. The number of entries contained in the
array isthe number of fixed-size blocks available in the managed memory area. For example, IMB of memory
can be divided into 32,768 32-byte blocks. Therefore, in this case, the array has 32,768 entries.

To simplify the example for better understanding of the al_qorithms'; nvolved, iuast 12 units (g memory are used.
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Figure 13.3 shows the example allocation array. Alocation for 3 units 2 units 4 s

Figure 13.3: Static array implementation of the allocation map.

In Figure 13.3, let the alocation-array index start at 0. Before any memory has been allocated, one large free
block is present, which consists of all 12 units of available memory. The alocation array usesasimple
encoding scheme to keep track of allocated and free blocks of memory. To indicate arange of contiguous free
blocks, a positive number is placed in the first and last entry representing the range. This number is equal to the
number of free blocks in the range. For example, in the first array shown on the left, the number of free units (12
in this case) isplaced in the entries at index 0 and index 11.

Placing a negative number in the first entry and a zero in the last entry indicates arange of allocated blocks. The
number placed in thefirst entry is equal to -1 times the number of allocated blocks.

In this example, the first alocation request isfor three units. The array labeled 1 in Figure 13.3 represents the
state of the alocation array after thisfirst allocation request is made. The value of -3 at index 9 and the value of
0 at index 11 marks the range of the allocated block. The size of the free block is now reduced to nine. Step 3in
Figure 13.3 shows the state of the allocation array at the completion of three allocation requests. This array
arrangement and the marking of allocated blocks simplify the merging operation that takes place during the free
operation, as explained later in this chapter.

Not only does this allocation array indicate which blocks are free, but it also implicitly indicates the starting
address of each block, because a ssimple relationship exists between array indices and starting addresses, as

shown
starting address = offset + unit_size*index



When alocating ablock of memory, malloc uses this formulato calculate the starting address of the block. For
example, in Figure 13.3, thefirst allocation for three units begins at index 9. If the offset in the formulais

0x10000 and the unit sizeis 0x20 (32 decimal), the address returned for index 9 is
0x10000 + 0x20*9 = 0x10120

13.2.3 Finding Free Blocks Quickly

In this memory management scheme, malloc always allocates from the largest available range of free blocks.
The allocation array described is not arranged to help malloc perform thistask quickly. The entries representing
free ranges are not sorted by size. Finding the largest range always entails an end-to-end search. For this
reason, a second data structure is used to speed up the search for the free block that can satisfy the allocation
request. The sizes of free blocks within the allocation array are maintained using the heap data structure, as
shown in Figure 13.4. The heap data structure is a complete binary tree with one property: the value contained
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Figure 13.4: Free blocks in a heap arrangement.

The size of each free block isthe key used for arranging the heap. Therefore, the largest free block is always at
the top of the heap. The malloc algorithm carves the allocation out of the largest available free block. The
remaining portion is reinserted into the heap. The heap is rearranged as the last step of the memory alocation
process.

Although the size of each free range isthe key that organizes the heap, each node in the heap is actually a data
structure containing at least two pieces of information: the size of afree range and its starting index in the

alocation array. The malloc operation involves the following steps:
1.

Examine the heap to determine if afree block that islarge enough for the allocation request exists.
If no such block exists, return an error to the caller.
Retrieve the starting allocation-array index of the free range from the top of the heap.

Updeate the allocation array by marking the newly allocated block, asillustrated in Figure 13.3.

If the entire block is used to satisfy the alocation, update the heap by deleting the largest node. Otherwise
update the size.

Rearrange the heap array.



Before any memory has been alocated, the heap has just one node, signifying that the entire memory regionis
available as one, large, free block. The heap continues to have a single node either if memory is allocated
consecutively without any free operations or if each memory free operation results in the deall ocated block
merging with itsimmediate neighbors. The heap structure in Figure 13.4 represents free blocks interleaved with
blocks in use and is similar to the memory map in Figure 13.2.

The heap can be implemented using another static array, called the heap array, as shownin Figure 13.4. The
array index begins at 1 instead of 0 to simplify coding in C. In this example, six free blocks of 20, 18, 12, 11, 9,
and 4 blocks are available. The next memory allocation uses the 20-block range regardless of the size of the
allocation request. Note that the heap array isacompact way to implement abinary tree. The heap array stores
no pointers to child nodes; instead, child-parent relationships are indicated by the positions of the nodes within
the array.

13.2.4 Thefree Operation

Note that the bottom layer of the malloc and free implementation is shown in Figure 13.3 and Figure 13.4.In
other words, another layer of software tracks, for example, the address of an allocated block and its size. Let's
assume that this software layer exists and that the example is not concerned with it other than that this layer
feeds the necessary information into the free function.

The main operation of the free function isto determine if the block being freed can be merged with its
neighbors. The merging rules are
1.

If the starting index of the block is not O, check for the value of the array at (index -1). If thevalueis
positive (not a negative vaue or 0), this neighbor can be merged.
2.

If (index + number of blocks) does not exceed the maximum array index vaue, check for the value of the
array at (index + number of blocks). If the value is positive, this neighbor can be merged.

Theserules areillustrated best through an example, as shown in Figure 13.5.
1] 1 a

i r .
a 3 T ' 3 3 8
'

a i 2 2
1
4| [ 4

0
L]

Lo |h|e
o |2 ja|™
Lo lwe b |
-

1
o [] ] [ 0 [

Figure 13.5: The free operation.

Figure 13.5 shows two scenarios worth discussion. In the first scenario, the block starting at index 3 is being
freed. Following rule #1, look at the value at index 2. The value is 3; therefore, the neighboring block can be
merged. The value of 3 indicates that the neighboring block is 3 unitslarge. The block being freed is 4 units
large, so following rule #2, look at the value at index 7. The valueis -2; therefore, the neighboring block is still
in use and cannot be merged. The result of the free operation in the first scenario is shown as the second table in

Figure 13.5.

In the second scenario, the block at index 7 is being freed. Following rule #1, look at the value at index 6,
which is 0. This value indicates the neighboring block is still in use. Following rule #2, look at the value at
index 9, which is-3. Again, this value indicates that this block isaso in use. The newly freed block remains as
independent piece. After applying the two merge rules, the next free operation of the block starting at index 3
results in the allocation table shown asthe last table in Figure 13.5.



When ablock isfreed, the heap must be updated accordingly. Therefore, the free operation involvesthe
following steps:
1.

Update the allocation array and merge neighboring blocksif possible.
2.

If the newly freed block cannot be merged with any of its neighbors, insert a new entry into the heap
array.

If the newly freed block can be merged with one of its neighbors, the heap entry representing the
neighboring block must be updated, and the updated entry rearranged according to its new size.

If the newly freed block can be merged with both of its neighbors, the heap entry representing one of the
neighboring blocks must be deleted from the heap, and the heap entry representing the other neighboring
block must be updated and rearranged according to its new size.




13.3 Fixed-Size Memory Management in
Embedded Systems

Another approach to memory management uses the method of fixed-size memory pools. This approach is
commonly found in embedded networking code, such as in embedded protocol stacks implementation.

Asshown in Figure 13.6, the available memory spaceis divided into variously sized memory pools. All blocks
of the same memory pool have the same size. In this example, the memory space is divided into three pools of
block sizes 32, 50, and 128 respectively. Each memory-pool control structure maintains information such asthe
block size, total number of blocks, and number of free blocks. In this example, the memory pools are linked
together and sorted by size. Finding the smallest size adequate for an allocation requires searching through this

link and examining each control structure for the first adequate block size.
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Figure 13.6: Management based on memory pools.

A successful allocation resultsin an entry being removed from the memory pool. A successful deallocation
resultsin an entry being inserted back into the memory pool. The memory pool structure shown in Figure 13.6 is
asingly linked list. Therefore, memory allocation and deall ocation takes place at the beginning of thislist.

Thismethod is not as flexible as the algorithm introduced earlier in 'Dynamic Memory Allocation in Embedded
Systems on page 200 and a so has some drawbacks. In real-time embedded systems, a task's memory
requirement often depends on its operating environment. This environment can be quite dynamic. This method
does not work well for embedded applications that constantly operate in dynamic environments becauseit is
nearly impossible to anticipate the memory block sizes that the task might commonly use. Thisissue resultsin
increased internal memory fragmentation per allocation. In addition, the number of blocks to allocate for each
sizeisaso impossible to predict. In many cases, the memory pools are constructed based on a number of
assumptions. The result is that some memory pools are under used or not used at all, while others are overused.

On the other hand, this memory allocation method can actually reduce internal fragmentation and provide high
utilization for static embedded applications. These applications are those with predictable environments, a
known number of running tasks at the start of application execution, and initially known required memory block
Sizes.

One advantage of this memory management method isthat it is more deterministic than the heap method
algorithm. In the heap method, each malloc or free operation can potentialy trigger a rearrangement of the heap.
In the memory-pool method, memory blocks are taken or are returned from the beginning of the list so the
operation takes constant time. The memory pool does not require restructuring.




13.4 Blocking vs. Non-Blocking Memory Functions

The malloc and free functions do not allow the calling task to block and wait for memory to become available.
In many real-time embedded systems, tasks compete for the limited system memory available. Oftentimes, the
memory exhaustion condition is only temporary. For some tasks when a memory allocation request fails, the
task must backtrack to an execution checkpoint and perhaps restart an operation. Thisissueis undesirable asthe
operation can be expensive. If tasks have built-in knowledge that the memory congestion condition can occur
but only momentarily, the tasks can be designed to be more flexible. If such tasks can tolerate the allocation
delay, the tasks can choose to wait for memory to become available instead of either failing entirely or
backtracking.

For example, the network traffic pattern on an Ethernet network is bursty. An embedded networking node might
receive few packets for a period and then suddenly be flooded with packets at the highest allowable bandwidth
of the physical network. During this traffic burst, tasks in the embedded node that are in the process of sending
data can experience temporary memory exhaustion problems because much of the available memory is used for
packet reception. These sending tasks can wait for the condition to subside and then resume their operations.

In practice, awell-designed memory allocation function should allow for alocation that permits blocking
forever, blocking for atimeout period, or no blocking at al. This chapter uses the memory-pool approach to
demonstrate how to implement a blocking memory allocation function.

Asshown in Figure 13.7, ablocking memory allocation function can be implemented using both a counting
semaphore and a mutex lock. These synchronization primitives are created for each memory pool and are kept
in the control structure. The counting semaphore isinitialized with the total number of available memory blocks
at the creation of the memory pool. Memory blocks are allocated and freed from the beginning of the list.

counting
mustex lock samaphora

Figure 13.7: Implementing a blocking alocation function using a mutex and a counting semaphore.

Multiple tasks can access the free-blocks list of the memory pool. The control structure is updated each time an
alocation or a deallocation occurs. Therefore, a mutex lock is used to guarantee atask exclusive access to both
the free-blocks list and the control structure. A task might wait for a block to become available, acquire the
block, and then continue its execution. In this case, a counting semaphore is used.

For an allocation request to succeed, the task must first successfully acquire the counting semaphore, followed
by a successful acquisition of the mutex lock.

The successful acquisition of the counting semaphore reserves a piece of the available blocks from the pool. A
task first triesto acquire the counting semaphore. If no blocks are available, the task blocks on the counting
semaphore, assuming the task is prepared to wait for it. If aresource is available, the task acquires the counting
semaphore successfully. The counting semaphore token count is now one less than it was. At this point, the task
has reserved a piece of the available blocks but has yet to obtain the block.

Next, the task triesto lock the mutex. If another task is currently getting a block out of the memory pool or if
another task is currently freeing a block back into the memory pool, the mutex isin the locked state. The task
blocks waiting for the mutex to unlock. After the task locks the mutex, the task retrieves the resource from the



list.
The counting semaphore is released when the task finishes using the memory block.

The pseudo code for memory allocation using a counting semaphore and mutex lock is provided in Listing 13.1.
Listing 13.1: Pseudo code for memory allocation.

re( Counti ng_Semaphor e)

nmut ex)

etrieve the nenory block fromthe poo
Unl ock( mut ex)

e pseudo code for memory deallocation using a mutex lock and counting semaphore is provided in Listing
13.2.
Listing 13.2: Pseudo code for memory deallocation.

nmut ex)

se the menory bl ock back to into the poo
Nl ock( mut ex)

Rel ease( Counti ng Senmaphor e)

ISTmplementation shown in Listing 13.1 and 13.2 enables the memory allocation and deall ocation functions
to be safe for multitasking. The deployment of the counting semaphore and the mutex lock eliminates the priority
inversion problem when blocking memory alocation is enabled with these synchronization primitives. Chapter
6 discusses semaphores and mutexes. Chapter 16 discusses priority inversions.




13.5 Hardware Memory M anagement Units

Thusfar, the discussion on memory management focuses on the management of physica memory. Another topic
is the management of virtua memory. Virtual memory is atechnique in which mass storage (for example, ahard
disk) is made to appear to an application as if the mass storage were RAM. Virtual memory address space (also
called logical address space) islarger than the actual physical memory space. This feature allows a program
larger than the physical memory to execute. The memory management unit (MMU) provides several functions.
First, the MMU trandates the virtual addressto a physical address for each memory access. Second, the MMU
provides memory protection.

The address trand ation function differs from one MMU design to another. Many commercial RTOSes do not
support implementation of virtual addresses, so this chapter does not discuss address trandation. Instead, the
chapter discusses the MMU's memory protection feature, as many RTOSes do support it.

If an MMU is enabled on an embedded system, the physical memory istypically divided into pages. A set of
attributes is associated with each memory page. Information on attributes can include the following:

whether the page contains code (i.e., executable instructions) or data,
whether the page is readable, writable, executable, or a combination of these, and

whether the page can be accessed when the CPU is not in privileged execution mode, accessed only when
the CPU isin privileged mode, or both.

All memory access is done through MMU when it is enabled. Therefore, the hardware enforces memory access
according to page attributes. For example, if atask triesto write to amemory region that only allows for read
access, the operation is considered illegal, and the MMU does not alow it. The result is that the operation
triggers amemory access exception.




13.6 Pointsto Remember

Some points to remember include the following:

Dynamic memory allocation in embedded systems can be built using a fixed-size blocks approach.

Memory fragmentation can be classified into either external memory fragmentation or internal memory
fragmentation.

Memory compaction is generally not performed in real-time embedded systems.

Management based on memory poolsis commonly found in networking-related code.

A well-designed memory alocation function should allow for blocking allocation.

Blocking memory alocation function can be designed using both a counting semaphore and a mutex.
Many real-time embedded RTOSes do not implement virtual addressing when the MMU is present.

Many of these RTOSes do take advantage of the memory protection feature of the MMU.




Chapter 14: Modularizing An
Application For Concurrency

14.1 Introduction

Many activities need to be completed when designing applications for real-time systems. One group of
activities requires identifying certain elements. Some of the more important el ements to identify include:

1. system requirements,

2. inputs and outputs,

3. real-time deadlines,

4. events and event response times,

5. event arrival patterns and frequencies,
6. required objects and other components,
7. tasks that need to be concurrent,

8. system schedulability, and

9. useful or needed synchronization protocols for inter-task communications.

Depending on the design methodol ogies and modeling tools that a design team is using, the list of stepsto be
taken can vary, aswell asthe execution order. Regardless of the methodology, eventually a design team must
consider how to decompose the application into concurrent tasks (Step 7).

This chapter provides guidelines and discussions on how real-time embedded applications can be decomposed.
Many design teams use formalized object-oriented development techniques and modeling languages, such as
UML, to model their real-time systemsinitially. The concepts discussed in this section are complementary to
object-oriented design approaches, much emphasisis placed on decomposing the application into separate tasks
to achieve concurrency. Through examples, approaches to decomposing applications into concurrent tasks are
discussed. In addition, general guidelines for designing concurrency in area-time application are provided.

These guidelines and recommendations are based on a combination of things-lessons learned from current
engineering design practices, work done by H. Gomaa, current UML modeling approaches, and work done by
other researchersin the real-time field. Our guidelines provide high-level strategies on proceeding with
decomposing real-time applications for concurrency. Our recommendations, on the other hand, are specific
strategies focusing on the implementation of concurrency. Both the guidelines and recommendations might not
necessarily cover every exception that can arise when designing a real-time embedded application. If two
guidelines or recommendations appear to contain opposing thoughts, they should be treated as constituting a
tradeoff that the designer needs to consider.



At the completion of the application decomposition process, robust systems must validate the schedulability of
the newly formed tasks. Quantitative schedulability analysis on areal-time system determines whether the

system as designed is schedulable. A real-time system is considered schedulable if every task in the system can
meet its deadline.

This chapter also focuses on the schedulability analysis (Step 8). In particular, the chapter introduces aformal
method known as Rate Monotonic Analysis (RMA).




14.2 An Outside-In Approach to Decomposing
Applications

In most cases, designersinsist on a set of requirements before beginning work on a real-time embedded system.
If the requirements are not fully defined, one of the first activitiesis to ensure that many of these requirements
are solidified. Ambiguous areas also need to be fleshed out. The detailed requirements should be captured in a
document, such as a Software Requirements Specification (SRS). Only then can an engineering team make a
reasonable attempt at designing a system. A high-level example of a mobile phone design is provided to show
how to decompose an application into concurrent units of execution.

Commonly, decomposing an application is performed using an outside-in approach . This approach follows a
process of identifying the inputs and outputs of a system and expressing them in asimple high-level context
diagram. A context diagram for the mobile applicationisillustrated in Figure 14.1. The circle in the center of
the diagram represents the software application. Rectangular boxes represent the input and output devices for
this application. In addition, arrows, labeled with meaningful names, represent the flow of the input and output
communications. For the sake of smplicity, not all components (i.e., battery, input for hands-free ear plug, input
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for external power, and power on/off button) are illustrated.
Figure 14.1: High-level context diagram of a mobile handheld unit.

The diagram shows that mobile handset application provides interfaces for the following I/O devices.

antenna,

speaker,

volume control,

keypad,

microphone, and

LCD.

The following inputs are identified:

RF input,



volumeinput,

keypad input, and
microphone input.

The following outputs are identified:

RF output,

speaker output, and

LCD output.

After the inputs and outputs are identified, afirst cut at decomposing the application can be made. Figure 14.2
shows an expanded diagram of the circle identifying some of the potential tasks into which the application can
decompose. These tasks are along the edges of the newly drawn application, which means they probably must
interact with the outside world. Note that these tasks are not the only ones required, but the process provides a
good starting point. Upon further analysis, additional s may be identified, or existing tasks may be combined
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as more details are considered.

Figure 14.2: Using the outside-in approach to decompose an application into tasks.

Some inputs and outputs in a handheld mobile device can require more than one dedicated task to handle
processing. Conversely, in some cases, asingle task can handle multiple devices. Looking at the example, the
antenna can have two tasks assigned to it-one for handling the incoming voice channel and one for handling the
outgoing voice channel. Printing to the LCD can be arelatively simple activity and can be handled with one
task. Similarly, sampling the input voice from the microphone can also be handled with one task for now but
might require another task if heavy computation is required for sampling accuracy. Note that one task can handle
the input keys and the volume control. Finally, atask is designated for sending the output to the speaker.

This example illustrates why the decomposition method is called outside-in: an engineering team can continue
this way to decompose the overall application into tasks from the outside in.




14.3 Guiddlines and Recommendations for
| dentifying Concurrency

The outside-in approach to decomposing an application is an example of one practical way to identify types of
concurrent tasks that are dependent on or interact with 1/0O devices. The mobile handset example expands a
high-level context diagram to determine some of the obvious tasks required to handle certain events or actions.
Further refinement of this diagram would yield additional tasks. More formalized ways of identifying
concurrency exist, however. Many guidelines are provided in this section to help the reader identify
concurrency in an application. First, let's introduce a couple of concepts that are important to understanding
concurrency.

14.3.1 Units of Concurrency

It isimportant to encapsulate concurrency within an application into manageable units. A unit of concurrency
can be atask or aprocess; it can be any schedulable thread of execution that can compete for the CPU's
processing time. Although ISRs are not scheduled to run concurrently with other routines, they should also be
considered in designing for concurrency because they follow a preemptive policy and are units of execution
competing for CPU processing time. The primary objective of this decomposition processisto optimize
parallel execution to maximize areal-time application’s performance and responsiveness. If done correctly, the
result can be a system that meets all of its deadlines robustly and responsively. If done incorrectly, real-time
deadlines can be compromised, and the system's design may not be acceptable.

14.3.2 Pseudo versus True Concur rent Execution

Concurrent tasks in areal-time application can be scheduled to run on asingle processor or multiple
processors. Single-processor systems can achieve pseudo concurrent execution, in which an application is
decomposed into multiple tasks maximizing the use of asingle CPU. It isimportant to note that on asingle-CPU
system, only one program counter (also called an instruction pointer ) isused, and, hence, only one instruction
can be executed at any time. Most applications in this environment use an underlying scheduler's multitasking
capabilities to interleave the execution of multiple tasks; therefore, the term pseudo concurrent execution is
used.

In contrast, true concurrent execution can be achieved when multiple CPUs are used in the designs of real-time
embedded systems. For example, if two CPUs are used in a system, two concurrent tasks can execute in parallel
at onetime, as shown in Figure 14.3. This parallelism is possible because two program counters (one for each

CPU) are used, which alows for two different instructions to execute simultaneously.
“Pseudo” Concurrent Execution  “True” Concurrent Execution

Task 1 Task 2 Task 1 Task 2
L"“-"-I l l
wros

cPu 2
Figure 14.3: Pseudo and true concurrent (parallel) execution.

In the case of multiple CPU systems, the underlying RTOS typically is distributed, which means that various
components, or copies of RTOS components, can execute on different CPUs. On such systems, multiple tasks



can be assigned to run on each CPU, just asthey do on single-CPU systems. In this case, even though two or
more CPUs allow true concurrent execution, each CPU might actually be executing in a pseudo-concurrent
fashion.

Unless explicitly stated, this book refers to both pseudo and true parallel execution as concurrent execution for
the sake of simplicity.

Following the outside-in approach, certain types of tasks can be identified near the application edge (i.e., where
an application needs to create an interface with an 1/0 device), whereas other tasks can be internal to the
application. From the mobile handheld example, if a design team were to further decompose the application,
these internal tasks would be identified. Applications, such as calculator or calendar programs, are some
examples of internal tasks or groupings of tasks that can exist within the overall handheld mobile application.

Theseinternal tasks are decoupled from the I/O devices; they need no device-specific information in order to
run

14.3.3 Some Guiddines

Guideline 1: Identify Device Dependencies

Guideline 1a: Identify Active 1/O Devices

Guideline 1b: Identify Passive I/O Devices
Guideine 2: Identify Event Dependencies

Guiddine 3: Identify Time Dependencies

Guideline 3a: Identify Critical and Urgent Activities

Guideline 3b: Identify Different Periodic Execution Rates

Guideline 3c: Identify Temporal Cohesion
Guideline 4: Identify Computationally Bound Activities
Guideline 5: Identify Functional Cohesion
Guideline 6: Identify Tasks that Serve Specific Purposes

Guideline 7: Identify Sequential Cohesion

Guideline 1: Identify Device Dependencies

All real-time systems interface with the physical world through some devices, such as sensors, actuators,
keyboards, or displays. An application can have a number of 1/0O devicesinterfacing toit. Not all devices,
however, act as both input and output devices. Some devices can act just as inputs or just as outputs. Other
devices can act as both. The discussions in this book refer to all of these devices as I/O devices.

The outside-in approach focuses on looking at the I/0O devicesin a system and assigning atask to each device.
The basic concept is that unsynchronized devices need separate handling. For smple device interactions,



processing within an ISR may suffice; however, for additional device processing, a separate task or set of tasks
may be assigned. Both active and passive 1/0 devices should be considered for identifying potential areas of an
application that can be decomposed into concurrent tasks.

Asshown in Figure 14.4, hardware |1/O devices can be categorized as two types:

Active l/O devices

Passive I1/O devices

Active Devices
Produce intermupts

e —

|Inpu|Dﬁvi;s | [ outout Devices |

an::hmnuu_s__|_l Asynchronous I | Synchronous I |:sy|:dlrurms

Passive Devices
Do Mot Produce Inferrupls

——

||npull:m?oos | |0ut|;.rmaum |

Figure 14.4: Some general properties of active and passive devices.

Active I/O devices generate interrupts to communi cate with an application. These devices can generate
interrupts in a periodic fashion or in synch with other active devices. These devices are referred to in this book
as synchronous . Active devices can also generate interrupts aperiodically, or asynchronously, with respect to
other devices. These devices are referred to in this book as asynchronous .

Passive 1/0O devices do not generate interrupts. Therefore, the application must initiate communications with a
passive /O device. Applications can communicate with passive devicesin aperiodic or aperiodic fashion.

Active devices generate interrupts whether they are sending input to or receiving output from the CPU. Active
input devices send an interrupt to the CPU when the device has new input ready to be processed. The new input
can be alarge buffer of data, asmall unit of data, or even no data at all. An example of the latter isa sensor that
generates an interrupt every time it detects some event. On the other hand, an active output device sends an
interrupt to the CPU when the device has finished delivering the previous output from the CPU to the physical
world. Thisinterrupt announces to the CPU and the application that the output device has completed the last
request and is ready to handle the next request.

Passive input or output devices require the application to generate the necessary requestsin order to interact
with them. Passive input devices produce an input only when the application requests. The application can
make these requests either periodically or aperiodically. In the case of the former, the application runsin a
periodic loop and makes a request every time through the loop, called polling a device . For aperiodic
requests, the application makes the request only when it needs the data, based on an event asynchronous to the
application itself, such as an interrupt from another device or a message from another executing task.

Special care must be taken when polling a passive input device, especially when sampling asignal that has
sharp valleys or peaks. If the polling frequency istoo low, a chance exists that a valley or peak might be
missed. If the polling frequency istoo high, extra performance overhead might be incurred that uses unnecessary
CPU cycles.

Guiddine 1a: Identify Active Devices

Activeinput or output 1/0 devices use interrupts to communicate with real-time applications. Every time an
active input device needs to send data or notification of an event to areal-time application, the device generates
an interrupt. Theinterrupt triggers an I SR that executes the minimum code needed to handle the input. If alot of
processing is required, the ISR usually hands off the process to an associated task through an inter-task
communication mechanism.



Similarly, active output devices aso generate interrupts when they need to communicate with applications.
However, interrupts from active output devices are generated when they are ready to receive the next piece of
data or notification of some event from the application. The interrupts trigger the appropriate ISR that hands of f
the required processing to an associated task using an inter-task communication mechanism.

The diagram for both an active I/O device acting as an input or an output to an application and for adevice
generating interrupts in a synchronous or asynchronous manner is similar to the oneillustrated in Figure 14.5.
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Figure 14.5: Genera communication mechanisms for active I/O devices.

Some typical tasks that can result from identifying an active 1/0O devicein areal-time application are listed in
Table 14.1.
Table 14.1: Common tasks that interface with active I/O devices.

Task Type Description

Asynchronous Active Device |Assigned to active I/O devices that generate aperiodic interrupts or whose
1/O Task operation is asynchronous with respect to other 1/0 devices.

Synchronous Active Device  |Assigned to active /O devices that generate periodic interrupts or whose
1/O Task operation is synchronous with respect to other 1/0 devices.

Resource Control Devicel/O |Assigned for controlling the accessto a shared 1/0 device or agroup of
Task devices.

Event Dispatch Devicel/O  |Assigned for dispatching events to other tasks from one or more I/O devices.
Task

Recommendation 1: Assign separatetasksfor separate active asynchronous /O devices. Active l/O
devices that interact with real-time applications do so at their own rate. Each hardware device that uses
interrupts to communicate with an application and whose operation is asynchronous with respect to other 1/0
devices should be considered to have their own separate tasks.

Recommendation 2: Combinetasksfor I/O devicesthat generate infrequent interrupts having long
deadlines. Intheinitial design, each active I/O device can have a separate task assigned to handle processing.
Sometimes, however, combining the processing of two /O devices into asingle task makes sense. For example,
if two 1/0 devices generate aperiodic or asynchronous interrupts infrequently and have relatively long
deadlines, asingle task might suffice.

Recommendation 3: Assign separ ate tasks to devices that have different input and output rates. Generally
gpeaking, atask that handles a device with a high 1/O frequency should have a higher task priority than atask
that handles a device with alower frequency. Higher 1/O frequency implies shorter, allowable processing time.
However, the importance of the 1/0 operation, and the consequences of delayed 1/0, should be taken into
account when assigning task priorities with respect to 1/O frequency.

Recommendation 4: Assign higher prioritiesto tasks associated with interrupt-generating devices. A task
that needsto interface with a particular 1/0 device must be set to a high-enough priority level so that the task
can keep up with the device. This requirement exists because the task's execution speed is usually constrained
by the speed of the interrupts that an associated I/O device generates and not necessarily the processor on which
the application is running.

For 1/0 devices that generate periodic interrupts, the interrupt period dictates how long atask must handle



processing. If the period is very short, tasks associated with these devices need to be set at high priorities.

For 1/0O devices that generate aperiodic interrupts, it can be difficult to predict how long an associated task will
have to process the request before the next interrupt comes in. In some cases, interrupts can occur rapidly. In
other cases, however, the interrupts can occur with longer time intervals between them. A rule of thumb is that
these types of tasks need their priorities set high to ensure that all interrupt requests can be handled, including
ones that occur within short timeintervals. If an associated task's priority is set too low, the task might not be
able to execute fast enough to meet the hardware device's needs.

Recommendation 5: Assign a resour ce control task for controlling accessto 1/0O devices. Sometimes
multiple tasks need to access a single hardware 1/0O device. In this case, the device can only serve onetask at a
time; otherwise, data may be lost or corrupted. An efficient approach isto assign a resource control task to that
device (also known as a resource monitor task ). Thistask can be used to receive multiple 1/O requests from
different tasks, so that the resource control task can send the I/O requests in a controlled and sequential manner
to the I/O device.

This resource control task is not limited to working with just one I/O device. In some cases, one resource task
can handle multiple requests that might need to be dispatched to one or more 1/0O devices.

Recommendation 6: Assign an event dispatch task for 1/0 devicerequeststhat need to be handed off to
multiple tasks. Events or requests that come from an 1/0 device can be propagated across multiple tasks. A
single task assigned as an event dispatch task can receive all requests from 1/0O devices and can dispatch them
to the appropriate tasks accordingly.

Guiddine 1b: Identify Passive Devices

Passive devices are different from active devices because passive devices do not generate interrupts. They sit
passively until an application's task requests them to do something meaningful. Whether the request isfor an
input or an output, an application's task needs to initiate the event or data transfer sequence. The ways that tasks
communicate with these devicesis either by polling them in a periodic manner or by making a request whenever
the task needs to perform input or output.

The diagram either for a passive /O device acting as an input or an output to an application or for
communicating with the application periodically or aperiodically is similar to the oneillustrated in Figure 14.6.
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Figure 14.6: General communication mechanisms for passive 1/0 devices.

Some typical tasks that can result from identifying a passive 1/0 device in areal-time application are listed in
Table 14.2.
Table 14.2: Common tasks that interface with passive 1/0 devices.

Task Type Description

Aperiodic Passive Device /O |Assigned to passive |/O devices and issues requests to those devices on an
Task as-needed basis.

Periodic Passive Device /O Assigned to passive /O devices and polls those devicesin a periodic
Task fashion.




Resource Control Devicel/O  |Assigned for controlling the access to a shared hardware 1/0O device or a
Task group of devices.

Event Dispatch Device 1/O Assigned for dispatching events to other tasks from one or more I/O devices.
Task

Recommendation 1. Assign a singletask to interface with passive 1/0 devices when communication with
such devicesisaperiodic and when deadlines are not urgent. Some applications need to communicate with a
passive |/O device aperiodically. This device might be a sensor or display. If the deadlines are relatively long,
these requests for one or more passive I/O devices can be handled with one task.

Recommendation 2: Assign separ ate polling tasksto send periodic requeststo passive 1/0O devices.
Commonly, areal-time application might need to sample asigna or some data repeatedly from a passive 1/0
device. This process can be done effectively in a periodic polling loop. In order to avoid over-sampling or
under-sampling the data, assign a separate task to each passive 1/0O device that needs to be polled at different
rates.

Recommendation 3: Trigger polling requestsviatimer events. More than one way exists to perform
timing-based polling loops. One common mistake is using atime delay within the loop that is equal to the
period of the sampling rate. This method can be problematic because the loop won't take exactly the same
amount of time to execute each time through-the loop is subject to interrupts and preemption from higher priority
tasks. A better processisto use atimer to trigger an event after every cycle. A more accurate periodic rate can
be maintained using this approach.

Recommendation 4: Assign a high relative priority to polling taskswith relatively short periods. Tasks that
are set up to poll passive I/O devices for inputs may do so at different rates. If the period is very short, less
time is available to process incoming data before the next cycle. In this case, these tasks with faster polling
loops need to be set with higher priorities. Designers, however, need to remember that this process must be
done carefully, as heavy polling can use extra CPU cycles and result in increased overhead.

Guideline 2: Identify Event Dependencies

Eventsin areal-time application can propagate across multiple tasks. Whether an event is generated externally
from an I/O device or internally from within the application, a need exists for creating atask or agroup of tasks
that can properly handle the event asit is propagated through the application. Externally generated events are
discussed in the pervious sections, so the focus here is on internally generated events. Examples of events that
can be generated internally to an application include when error conditions arise or faults are detected. An
event in this case is generated and propagated outward to an 1/0O device or an internal corrective action is taken.

Guideline 3: Identify Time Dependencies

Before designing areal-time application, take time to understand and itemize each of the timing deadlines
required for the application. After the timing deadlines have been identified, separate tasks can be assigned to
handle the separate deadlines. Task priorities can be assigned based on the criticality or urgency of each
deadline.

Guideline 3a: Identify Critical and Urgent Activities

Note the difference between criticality and urgency. Critical tasks are tasks whose failure would be disastrous.
The deadline might be long or short but must always be met, or else the system does not fulfill the
specifications. An urgent task isatask whose timing deadline isrelatively short. Meeting this deadline might
or might not be critical. Both urgent and critical tasks are usually set to higher relative priorities.



Guideline 3b: Identify Different Periodic Execution Rates

Each rate-driven activity runs independently of any other rate. Periodic activities can be identified, and
activities can be grouped into tasks with similar rates.

Guidéine 3c: Identify Temporal Cohesion

Real-time systems may contain sequences of code that always execute at the same time, although they are
functionally unrelated. Such sequences exhibit temporal cohesion. Examples are different activities driven by
the same externa stimulus (i.e., atimer). Grouping such sequencesinto one task reduces system overhead.

Guideline 4: I dentify Computationally Bound Activities

Some activitiesin areal-time application require alot of CPU time compared to the time required for other
operations, such as performing 1/0. These activities, known as computationally bound activities, can be
number-crunching activities and typically have relatively long deadlines. These types of activities are usually
set to lower relative priorities so that they do not monopolize the CPU. In some cases, these types of tasks can
be time-dliced at acommon priority level, where each gets time to execute when tasks that are more critical
don't need to run.

Guiddine5: Identify Functional Cohesion

Functional cohesion requires collecting groups of functions or sequences of code that perform closely related
activitiesinto asingle task. In addition, if two tasks are closely coupled (pass lots of data between each other),
they should also be considered for combination into one task. Grouping these closely related or closely coupled
activitiesinto a singe task can help eliminate synchronization and communication overhead.

Guideline 6: I dentify Tasksthat Serve Specific Purposes

Tasks can a so be grouped according to the specific purposes they serve. One example of atask serving aclear

purposeis a safety task. Detection of possible problems, setting alarms, and sending notifications to the user, as
well as setting up and executing corrective measures, are just some examples that can be coordinated in a safety
task or group of tasks. Other tasks can also exist in areal-time system that can serve a specific purpose.

Guiddine 7: Identify Sequential Cohesion

Sequential cohesion groups activities that must occur in agiven sequence into one task to further emphasize the
requirement for sequential operation. A typical example isasequence of computations that must be carried out
in apredefined order. For example, the result of the first computation provides input to the next computation and
so on.




14.4 Schedulability Analysis-Rate M onotonic
Analysis

After an embedded application has been decomposed into | SRs and tasks, the tasks must be scheduled to run in
order to perform required system functionality. Schedulability analysis determinesif all tasks can be scheduled
to run and meet their deadlines based on the deployed scheduling agorithm while still achieving optimal
processor utilization.

Note that schedulability analysis|ooks only at how systems meet temporal requirements, not functional
requirements.

The commonly practiced analytical method for real-time systems is Rate Monotonic Analysis (RMA). Liu and
Layland initially devel oped the mathematical model for RMA in 1973. (This book calls their RMA model the
basic RMA because it has since been extended by later researchers.) The model is developed over a scheduling
mechanism called Rate Monotonic Scheduling (RMS), which is the preemptive scheduling algorithm with rate
monotonic priority assignment as the task priority assignment policy. Rate monotonic priority assignment isthe
method of assigning atask its priority as a monotonic function of the execution rate of that task. In other words,
the shorter the period between each execution, the higher the priority assigned to atask.

A set of assumptionsis associated with the basic RMA. These assumptions are that:
al of the tasks are periodic,
the tasks are independent of each other and that no interactions occur among tasks,
atask's deadline is the beginning of its next period,
each task has a constant execution time that does not vary over time,

al of the tasks have the same level of criticality, and

aperiodic tasks are limited to initialization and failure recovery work and that these aperiodic tasks do
not have hard deadlines.

14.4.1 Basic RM A Schedulability Test

Equation 14.1 is used to perform the basic RMA schedul ability test on a system.

1 Eq. 14.1

Ci = worst-case execution time associated with periodic task |

Ti = period associated with task i



n = number of tasks

U( n) isthe utilization factor. The right side of the equation is the theoretical processor utilization bound. If the
processor utilization for a given set of tasks is less than the theoretical utilization bound, this set of tasksis
schedulable. The value of U decreases as n increases and eventually converges to 69% when n becomes
infinite.

Let'slook at a sample problem and see how the formulaisimplemented. Table 14.3 summarizes the properties
of three tasks that are scheduled using the RMS.
Table 14.3: Properties of tasks.

Periodic Task Execution Time Period (milliseconds)
Task 1 20 100
Task 2 30 150
Task 3 50 300

Using Equation 14.1, the processor utilization for this sample problem is calculated as follows
20 . 30 ; 50 .
100 | 150 300

Ui3)=32""-n

56.67% < [-‘ 3)= T77.98%

Tota utilization for the sample problem is at 57%, which is below the theoretical bound of 77%. This system of
three tasksis schedulable, i.e., every task can meet its deadline.

14.4.2 Extended RAM Schedulability Test

The basic RMA islimiting. The second assumption associated with basic RMA isimpractical because tasksin
real-time systems have inter-dependencies, and task synchronization methods are part of many real-time
designs. Task synchronization, however, lies outside the scope of basic RMA.

Deploying inter-task synchronization methods implies some tasks in the system will experience blocking, which

isthe suspension of task execution because of resource contention. Therefore, the basic RMA is extended to
account for task synchronization. Equation 14.2 provides the equation for the extended RMA schedul ability test.

Fr7 Eq. 14.2

where:

Ci = worst case execution time associated with periodic task |

Ti = period associated with task i

Bi = the longest duration of blocking that can be experienced by |
n = number of tasks

This equation is best demonstrated with an example. This example uses the same three tasks provided in Table
14.3 and inserts two shared resources, as shown in Figure 14.7. In this case, the two resources represent a



e i
shared memory (resource #1) and an 1/0 bus (resource #2). L™ Tosk3- 18 s

Figure 14.7: Example setup for extended RMA.

Task #1 makes use of resource #2 for 15ms at arate of once every 100ms. Task #2 is alittle more complex. It
isthe only task that uses both resources. Resource #1 is used for 5ms, and resource #2 is used for 10ms. Task
#2 must run at arate of once every 150ms.

Task #3 has the lowest frequency of the tasks and runs once every 300ms. Task #3 also uses resource #2 for
18ms.

Now looking at schedulability, Equation 14.2 yields three separate equations that must be verified against a

20 .18 c )= 12-1)
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utility bound. Let'stake acloser look at thefirst equation =~ S Gt 1005

Either task #2 or task #3 can block task #1 by using resource #2. The blocking factor B1 isthe greater of the
times task #2 or task #3 holds the resource, which is 18ms, from task #3. Applying the numbers to Equation
14.2, the result is below the utility bound of 100% for task #1. Hence, task #1 is schedulable.

Looking at the second equation, task #2 can be blocked by task #3. The blocking factor B2 is 18ms, which isthe
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time task #3 has control of resource #2, as shown

Task #2 is aso schedulable as the result is below the utility bound for two tasks. Now looking at the last
equation, note that Bn is always equal to 0. The blocking factor for the lowest level task is aways 0, as no other
20 , 30 | 50
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tasks can block it (they all preempt it if they need to), as shown
Again, theresult is below the utility bound for the three tasks, and, therefore, all tasks are schedulable.

Other extensions are made to basic RMA for dealing with the rest of the assumptions associated with basic
RMA, such as accounting for aperiodic tasks in real-time systems. Consult the listed references for additional
readings on RMA and related materials.




14.5 Pointsto Remember

Some points to remember include the following:

An outside-in approach can be used to decompose applications at the top level.
Device dependencies can be used to decompose applications.

Event dependencies can be used to decompose applications.

Timing dependencies can be used to decompose applications.

Levelsof criticality of workload involved can be used to decompose applications.

Functional cohesion, temporal cohesion, or sequential cohesion can be used either to form atask or to
combine tasks.

Rate Monotonic Scheduling can be summarized by stating that atask's priority depends on its period-the
shorter the period, the higher the priority. RMS, when implemented appropriately, produces stable and
predictable performance.

Schedulability analysis only looks at how systems meet temporal requirements, not functional
requirements.

Six assumptions are associated with the basic RMA:
0
all of the tasks are periodic,
the tasks are independent of each other and that no interactions occur among tasks,
atask's deadline is the beginning of its next period,
each task has a constant execution time that does not vary over time,

all of the tasks have the same level of criticality, and

aperiodic tasks are limited to initialization and failure recovery work and that these aperiodic tasks do
not have hard deadlines.



Basic RMA does not account for task synchronization and aperiodic tasks.
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Chapter 15: Synchronization And
Communication

15.1 Introduction

Software applications for rea-time embedded systems use concurrency to maximize efficiency. Asaresult, an
application's design typically involves multiple concurrent threads, tasks, or processes. Coordinating these
activities requires inter-task synchronization and communication.

This chapter focuses on:

resource synchronization,

activity synchronization,

inter-task communication, and

ready-to-use embedded design patterns.




15.2 Synchronization

Synchronization is classified into two categories. resource synchronization and activity synchronization .
Resource synchronization determines whether access to a shared resource is safe, and, if not, when it will be
safe. Activity synchronization determines whether the execution of a multithreaded program has reached a
certain state and, if it hasn't, how to wait for and be notified when this state is reached.

15.2.1 Resour ce Synchronization

Access by multiple tasks must be synchronized to maintain the integrity of a shared resource. This processis
called resource synchronization , aterm closely associated with critical sections and mutua exclusions.

Mutual exclusion isaprovision by which only onetask at atime can access a shared resource. A critical
section is the section of code from which the shared resource is accessed.

As an example, consider two tasks trying to access shared memory. One task (the sensor task) periodically
receives data from a sensor and writes the data to shared memory. Meanwhile, a second task (the display task)
periodically reads from shared memory and sends the data to a display. The common design pattern of using
shared memory isillustrated in Figure 15.1.

Inputs from Display Outputs o
VO Devwice ——— Task 10 Dervica
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Figure 15.1: Multiple tasks accessing shared memory.

Problems arise if access to the shared memory is not exclusive, and multiple tasks can simultaneoudly accessit.
For example, if the sensor task has not completed writing data to the shared memory area before the display task
tries to display the data, the display would contain a mixture of data extracted at different times, leading to
erroneous data i nterpretation.

The section of code in the sensor task that writes input data to the shared memory is acritical section of the
sensor task. The section of code in the display task that reads data from the shared memory isacritical section
of the display task. These two critical sections are called competing critical sections because they access the
same shared resource.

A mutual exclusion agorithm ensures that one task's execution of acritical section is not interrupted by the
competing critical sections of other concurrently executing tasks.

One way to synchronize access to shared resourcesis to use a client-server model, in which a central entity
called a resource server isresponsible for synchronization. Access requests are made to the resource server,
which must grant permission to the requestor before the requestor can access the shared resource. The resource
server determines the ligibility of the requestor based on pre-assigned rules or run-time heuristics.

While this model simplifies resource synchronization, the resource server is a bottleneck. Synchronization
primitives, such as semaphores and mutexes, and other methods introduced in alater section of this chapter,
allow devel opers to implement complex mutual exclusion algorithms. These algorithms in turn allow dynamic
coordination among competing tasks without intervention from athird party.

15.2.2 Activity Synchronization



In general, atask must synchronize its activity with other tasks to execute a multithreaded program properly.
Activity synchronization is also called condition synchronization or sequence control . Activity
synchronization ensures that the correct execution order among cooperating tasksis used. Activity
synchronization can be either synchronous or asynchronous.

One representative of activity synchronization methodsis barrier synchronization . For example, in embedded
control systems, a complex computation can be divided and distributed among multiple tasks. Some parts of this
complex computation are I/O bound, other parts are CPU intensive, and still others are mainly floating-point
operations that rely heavily on specialized floating-point coprocessor hardware. These partial results must be
collected from the various tasks for the final calculation. The result determines what other partial computations
each task isto perform next.

The point at which the partial results are collected and the duration of the final computation isa barrier . One
task can finishits partial computation before other tasks complete theirs, but this task must wait for all other
tasks to complete their computations before the task can continue.

Barrier synchronization comprises three actions:

atask postsitsarrival at the barrier,
the task waits for other participating tasks to reach the barrier, and

the task receives notification to proceed beyond the barrier.

A later section of this chapter shows how to implement barrier synchronization using mutex locks and condition
variables.

Asshown in Figure 15.2, agroup of five tasks participatesin barrier synchronization. Tasksin the group
complete their partial execution and reach the barrier at various times; however, each task in the group must
walit at the barrier until all other tasks have reached the barrier. The last task to reach the barrier (in this
example, task T5) broadcasts a notification to the other tasks. All tasks cross the barrier at the same time (
conceptualy in auniprocessor environment due to task scheduling. We say ‘conceptually’ becausein a
uniprocessor environment, only one task can execute at any given time. Even though all five tasks have crossed
the barrier and may continue execution, the task with the highest priority will execute next.
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Figure 15.2: Visualization of barrier synchronization.

Another representative of activity synchronization mechanismsis rendezvous synchronization , which, asits
name implies, is an execution point where two tasks meet. The main difference between the barrier and the
rendezvous is that the barrier allows activity synchronization among two or more tasks, while rendezvous
synchronization is between two tasks.

In rendezvous synchronization, a synchronization and communication point called an entry is constructed as a



function call. One task definesits entry and makesit public. Any task with knowledge of thisentry can call it as
an ordinary function call. The task that defines the entry accepts the call, executesit, and returns the results to
the caller. Theissuer of the entry call establishes arendezvous with the task that defined the entry.

Rendezvous synchronization is similar to synchronization using event-registers, which Chapter 8 introduces, in
that both are synchronous. The issuer of the entry call isblocked if that call is not yet accepted; similarly, the
task that accepts an entry call is blocked when no other task has issued the entry call. Rendezvous differs from
event-register in that bidirectional data movement (input parameters and output results) is possible.

A derivative form of rendezvous synchronization, called simple rendezvous in this book, uses kernel
primitives, such as semaphores or message queues, instead of the entry call to achieve synchronization. Two

tasks can implement asimpl %igglg%%%§1without data passing by using two binary semaphores, as shown in

Task B @‘& Task
#1 #2
binary semaphore #2
@

Figure 15.3: Simple rendezvous without data passing.

Figure 15.3.

Both binary semaphores are initialized to 0 . When task #1 reaches the rendezvous, it gives semaphore #2, and
then it gets on semaphore #1. When task #2 reaches the rendezvous, it gives semaphore #1, and then it getson
semaphore #2. Task #1 has to wait on semaphore #1 before task #2 arrives, and vice versa, thus achieving
rendezvous synchronization.

15.2.3 Implementing Barriers
Barrier synchronization is used for activity synchronization. Listing 15.1 shows how to implement a

barrier-synchronization mechanism using a mutex and a condition variable.
Listing 15.1: Pseudo code for barrier synchronization.

ef struct {
nut ex_t br | ock; /* guardi ng mutex */

cond_t br _cond; /* condition variable */
i nt br _count; /* num of tasks at the barrier */
i nt br _n_t hreads; /* num of tasks participating in the barrier

synchroni zati on */
} barrier_t;

barrier(barrier_t *br)
{
mut ex_| ock( &r - >br I ock);
br->br_count ++;
if (br->br_count < br->br_n_threads)
cond_wai t ( &r->br_cond, &br->br_I| ock);
el se
{
br->br_count = 0;
cond_br oadcast ( &r - >br_cond);

}

mut ex_unl ock( &br - >br _I ock);

}

gparti cipating task invokes the function barrier for barrier synchronization. The guarding mutex for
br_count and br_n_threadsis acquired on line #2. The number of waiting tasks at the barrier is updated on line
#3. Line #4 checksto seeif al of the participating tasks have reached the barrier.



If more tasks are to arrive, the caller waits at the barrier (the blocking wait on the condition variable at line
#5). If the caller isthe last task of the group to enter the barrier, this task resets the barrier on line #6 and
notifies al other tasks that the barrier synchronization is complete. Broadcasting on the condition variable on
line #7 completes the barrier synchronization.




15.3 Communication

Tasks communicate with one another so that they can pass information to each other and coordinate their
activities in amultithreaded embedded application. Communication can be signal-centric, data-centric, or both.
In signal-centric communication , al necessary information is conveyed within the event signal itself. In
data-centric communication , information is carried within the transferred data. When the two are combined,
data transfer accompanies event notification.

When communication involves data flow and is unidirectional, this communication model is called loosely
coupled communication. In this modd, the data producer does ,E,‘Sfmﬂ,?q“i re aresponse from the consumer. Figure
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15.4 illustrates an example of loosely coupled communication.

Figure 15.4: Loosely coupled | SR-to-task communication using message queues.

For example, an ISR for an I/O device retrieves data from a device and routes the data to a dedicated
processing task. The ISR neither solicits nor requires feedback from the processing task. By contrast, in tightly
coupled communication , the data movement is bidirectional. The data producer synchronously waitsfor a
response to its data transfer before resuming execution, or the response is returned asynchronously while the
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data producer continues its function.
Figure 15.5: Tightly coupled task-to-task communication using message queues.

In tightly coupled communication, as shown in Figure 15.5, task #1 sends data to task #2 using message queue
#2 and walits for confirmation to arrive at message queue #1. The data communication is bidirectional. It is
necessary to use amessage queue for confirmations because the confirmation should contain enough information

in case task #1 needs to re-send the data. Task #1 can send multiple messagesto task #2, i.e., task #1 can
continue sending messages while waiting for confirmation to arrive on message queue #2.

Communication has several purposes, including the following:

transferring data from one task to another,

signaling the occurrences of events between tasks,

allowing one task to control the execution of other tasks,



synchronizing activities, and

implementing custom synchronization protocols for resource sharing.

Thefirst purpose of communication isfor one task to transfer data to another task. Between the tasks, there can
exist data dependency, in which one task is the data producer and another task is the data consumer. For
example, consider a specialized processing task that iswaiting for data to arrive from message queues or pipes
or from shared memory. In this case, the data producer can be either an ISR or another task. The consumer isthe
processing task. The data source can be an I/O device or another task.

The second purpose of communication isfor one task to signal the occurrences of events to another task. Either
physical devices or other tasks can generate events. A task or an ISR that is responsible for an event, such asan
1/O event, or a set of events can signal the occurrences of these events to other tasks. Data might or might not
accompany event signals. Consider, for example, atimer chip ISR that notifies another task of the passing of a
timetick.

The third purpose of communication isfor one task to control the execution of other tasks. Tasks can have a
master/dave relationship, known as process control . For example, in acontrol system, a master task that has
the full knowledge of the entire running system controlsindividual subordinate tasks. Each subtask is
responsible for acomponent, such as various sensors of the control system. The master task sends commands to
the subordinate tasks to enable or disable sensors. In this scenario, data flow can be either unidirectiona or
bidirectional if feedback is returned from the subordinate tasks.

The fourth purpose of communication is to synchronize activities. The computation example given in 'Activity
Synchronization' on page 233, section 15.2.2, shows that when multiple tasks are waiting at the execution
barrier, each task waits for asignal from the last task that enters the barrier, so that each task can continue its
own execution. In thisexample, it isinsufficient to notify the tasks that the final computation has completed;
additional information, such asthe actual computation results, must also be conveyed.

Thefifth purpose of communication is to implement additional synchronization protocols for resource sharing.
The tasks of a multithreaded program can implement custom, more-complex resource synchronization protocols
on top of the system-supplied synchronization primitives.




15.4 Resour ce Synchronization Methods

Chapter 6 discusses semaphores and mutexes that can be used as resource synchronization primitives. Two
other methods, interrupt locking and preemption locking, can also be deployed in accomplishing resource
synchronization.

15.4.1 Interrupt Locks

Interrupt locking (disabling system interrupts) is the method used to synchronize exclusive access to shared
resources between tasks and I SRs. Some processor architecture designs allow for afine-grained,

interrupt-level lock, i.e., aninterrupt lock level is specified so that asynchronous events at or below the level of
the disabled interrupt are blocked for the duration of the lock. Other processor architecture designs allow only
coarse-grained locking, i.e., all system interrupts are disabled.

When interrupts are disabled at certain levels, even the kernel scheduler cannot run because the system becomes
non-responsive to those external eventsthat can trigger task re-scheduling. This process guarantees that the
current task continues to execute until it voluntarily relinquishes control. As such, interrupt locking can aso be
used to synchronize access to shared resources between tasks.

Interrupt locking is ssimple to implement and involves only afew instructions. However, frequent use of
interrupt locks can alter overall system timing, with side effects including missed external events (resulting in
data overflow) and clock drift (resulting in missed deadlines). Interrupt locks, although the most powerful and
the most effective synchronization method, can introduce indeterminism into the system when used
indiscriminately. Therefore, the duration of interrupt locks should be short, and interrupt locks should be used
only when necessary to guard atask-level critical region from interrupt activities.

A task that enabled interrupt locking must avoid blocking. The behavior of atask making ablocking call (such
as acquiring a semaphore in blocking mode) while interrupts are disabled is dependent on the RTOS
implementation. Some RTOSes block the calling task and then re-enable the system interrupts. The kernel
disablesinterrupts again on behalf of the task after the task is ready to be unblocked. The system can hang
forever in RTOSes that do not support this feature.

15.4.2 Preemption L ocks

Preemption locking (disabling the kernel scheduler) is another method used in resource synchronization. Many
RTOS kernels support priority-based, preemptive task scheduling. A task disables the kernel preemption when
it entersits critical section and re-enables the preemption when finished. The executing task cannot be
preempted while the preemption lock isin effect.

On the surface, preemption locking appears to be more acceptable than interrupt locking. Closer examination
revealsthat preemption locking introduces the possibility for priority inversion. Even though interrupts are
enabled while preemption locking isin effect, actual servicing of the event is usually delayed to a dedicated
task outside the context of the ISR. The ISR must notify that task that such an event has occurred.

This dedicated task usually executes at a high priority. This higher priority task, however, cannot run while
another task isinside acritical region that a preemption lock is guarding. In this case, the result is not much
different from using an interrupt lock. The priority inversion, however, is bounded. Chapter 16 discusses
priority inversion in detail.

The problem with preemption locking isthat higher priority tasks cannot execute, even when they are totally



unrelated to the critical section that the preemption lock is guarding. This process can introduce indeterminism
inasimilar manner to that caused by the interrupt lock. This indeterminism is unacceptable to many systems
requiring consistent real-time response.

For example, consider two medium-priority tasks that share a critical section and that use preemption locking as
the synchronization primitive. An unrelated print server daemon task runs at a much higher priority; however,
the printer daemon cannot send a command to the printer to g ect one page and feed the next while either of the
medium tasksisinside the critical section. Thisissue resultsin garbled output or output mixed from multiple
print jobs.

The benefit of preemption locking isthat it allows the accumulation of asynchronous eventsinstead of deleting
them. The I/O deviceis maintained in a consistent state because its ISR can execute. Unlike interrupt locking,
preemption locking can be expensive, depending on itsimplementation.

In the majority of RTOSes when atask makes a blocking call while preemption is disabled, another task is
scheduled to run, and the scheduler disables preemption after the original task is ready to resume execution.




15.5 Critical Section Revisited

Many sources give the impression that a mutua exclusion algorithm similar to either the interrupt lock or the
preemption lock should be used to guard a critical section. One implication isthat the critical section should be
kept short. Thisidea bears further examination.

The critical section of atask isa section of code that accesses a shared resource. A competing critical section
isasection of code in another task that accesses the same resource. If these tasks do not have real-time
deadlines and guarding the critical section is used only to ensure exclusive access to the shared resource
without side effects, then the duration of the critical section is not important.

Imagine that a system has two tasks: one that performs some cal culations and stores the resultsin a shared
variable and another that reads that shared variable and displaysits vaue. Using a chosen mutual exclusion
algorithm to guard the critical section ensures that each task has exclusive access to the shared variable. These
tasks do not have real-time requirements, and the only constraint placed on these two tasksis that the write
operation precedes the read operation on the shared variable.

If another task without a competing critical section existsin the system but does have real-time deadlinesto
meet, the task must be allowed to interrupt either of the other two tasks, regardless of whether the task to be
interrupted isin its critical section, in order to guarantee overall system correctness. Therefore, in this
particular example, the duration of the critical sections of the first two tasks can be long, and higher priority
task should be allowed to interrupt.

If the first two tasks have real-time deadlines and the time needed to compl ete their associated critical sections
impacts whether the tasks meet their deadlines, this critical section should run to completion without
interruption. The preemption lock becomes useful in this situation.

Therefore, it isimportant to evaluate the criticality of the critical section and the overall system impact before
deciding on which mutual exclusion algorithm to use for guarding a critical section. The solution to the mutual
exclusion problem should satisfy the following conditions:

only onetask can enter itscritical section at any given time,

fair access to the shared resource by multiple competing tasksis provided, and

one task executing its critical section must not prevent another task executing a non-competing critical
section.




15.6 Common Practical Design Patterns

This section presents a set of common inter-tasks synchronization and communication patterns designed from
real-life scenarios. These design patterns are ready to be used in real-world embedded designs.

In these design patterns, the operation of event register manipulation is considered an atomic operation. The
numberings shown in these design patterns indicate the execution orders.

15.6.1 Synchronous Activity Synchronization

Multiple ways of implementing synchronous activity synchronization are available, including:

task-to-task synchronization using binary semaphores,

| SR-to-task synchronization using binary semaphores,
task-to-task synchronization using event registers,

| SR-to-task synchronization using event registers,

| SR-to-task synchronization using counting semaphores, and

simple rendezvous with data passing.

Task-to-Task Synchronization Using Binary Semaphor es

In this design pattern, two tasks synchronize their activities using a binary semaphore, as shown in Figure 15.6.
Theinitia value of the binary semaphoreis 0. Task #2 has to wait for task #1 to reach an execution point, at
which time, task #1 signalsto task #2 its arrival at the execution point by giving the semaphore and changing the
value of the binary semaphoreto 1. At this point, depending on their execution priorities, task #2 can run if it

has higher priority. The value of the binary semaphore s reset to O after the synchronization. In this design
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pattern, task #2 has execution dependency on task #1. A

Figure 15.6: Task-to-task synchronization using binary semaphores.

| SR-to-Task Synchronization Using Binary Semaphores



In this design pattern, atask and an ISR synchronize their activities using a binary semaphore, as shown in
Figure 15.7. Theinitia value of the binary semaphoreis0. Thetask has to wait for the ISR to signal the
occurrence of an asynchronous event. When the event occurs and the associated 1SR runs, it signals to the task
by giving the semaphore and changing the value of the binary semaphoreto 1. The ISR runsto completion
before the task getslgrlgm%ance to resume execution. The value of the binary semaphore isreset to 0 after the task

Task

resumes execution.

Figure 15.7: SR-to-task synchronization using binary semaphores.

Task-to-Task Synchronization Using Event Registers

In this design pattern, two tasks synchronize their activities using an event register, as shown in Figure 15.8.
The tasks agree on a bit location in the event register for signaling. In this example, the bit location is the first
bit. Theinitial value of the event bit is 0. Task #2 has to wait for task #1 to reach an execution point. Task #1
signalsto task #2 its arrival at that point by setting the event bit to 1. At this point, depending on execution
priority, task #2 can run if it has higher priority. The value of the event bit isreset to O after synchronization.
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Figure 15.8: Task-to-task synchronization using event registers.

| SR-to-Task Synchronization Using Event Registers

In this design pattern, atask and an ISR synchronize their activities using an event register, as shown in Figure
15.9. Thetask and the ISR agree on an event bit location for signaling. In this example, the bit location isthe
first bit. Theinitia value of the event bit is 0. The task has to wait for the ISR to signal the occurrence of an
asynchronous event. When the event occurs and the associated ISR runs, it signals to the task by changing the
event bit to 1. The ISR runs to completion before the tgfd;&m%ets the chance to resume execution. The vaue of the
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event bit isreset to 0 after the task resume execution. .

Figure 15.9: | SR-to-task synchronization using event registers.

| SR-to-Task Synchronization Using Counting Semaphor es

In Figures 15.6, 15.7, 15.8, and 15.9, multiple occurrences of the same event cannot accumulate. A counting

semaphore, however, isused in Figure 15.10 to accumulate event occurrences and for task signaling. The value
of the counting semaphore increments by one each time the ISR gives the semaphore. Smilarly, itsvalueis



decremente%ﬂ% one each time the task gets the semaphore. The task runs as long as the counting semaphore is
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Figure 15.10: | SR-to-task synchronization using counting semaphores.

Simple Rendezvous with Data Passing

Two tasks can implement a ssmple rendezvous and can exchange data at the rendezvous point using two
message queues, as shown in Figure 15.11. Each message queue can hold a maximum of one message. Both
message queues are initially empty. When task #1 reaches the rendezvous, it puts data into message queue #2
and waits for amessage to arrive on message queue #1. When task #2 reaches the rendezvous, it puts data into
message queue #1 and waits for data to arrive on message queue #2. Task #1 has to wait on message queue #1
before task #2 arrives, and vice versa, thus achieving rendezvous synchronization with data passing.

message queue
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Figure 15.11: Task-to-task rendezvous using two message queues.

15.6.2 Asynchronous Event Natification Using Signals

Onetask can synchronize with another task in urgent mode using the signal facility. The signaled task processes
the event notification asynchronoudly. In Figure 15.12, atask generates asignal to another task. The receiving
task diverts from its normal execution path and executes its asynchronous signal routine.

N
&

Figure 15.12: Using signals for urgent data communication.
15.6.3 Resour ce Synchronization
Multiple ways of accomplishing resource synchronization are available. These methods include accessing

shared memory with mutexes, interrupt locks, or preemption locks and sharing multiple instances of resources
using counting semaphores and mutexes.

Shared Memory with Mutexes

In this design pattern, task #1 and task #2 access shared memory using amutex for synchronization. Each task



must first acquire the mutex before accessing the shared memory. The task blocks if the mutex is aready locked,
indicating that another task is accessing the shared memory. The task rel eases the mutex after it completesits
operation on the shared memory. Figure 15.13 shows the order of execution with respect to each task.
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Figure 15.13: Task-to-task resource synchronization-shared memory guarded by mutex.

Shared Memory with Interrupt Locks

In this design pattern, the I SR transfers data to the task using shared memory, as shown in Figure 15.14. The ISR
puts data into the shared memory, and the task removes data from the shared memory and subsequently
processesit. The interrupt lock is used for synchronizing access to the shared memory. The task must acquire
and release the interrupt lock to avoid the interrupt disrupting its execution. The ISR does not need to be aware
of the existence of the interrupt lock unless nested intmfyp@ts are supported (i.e., interrupts are enabled while an
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Figure 15.14: | SR-to-task resource synchronization- shared memory guarded by interrupt lock.

Shared Memory with Preemption L ocks

In this design pattern, two tasks transfer data to each other using shared memory, as shown in Figure 15.15.
Each task is responsible for disabling preemption before accessing the shared memory. Unlike using a binary
semaphore or amutex lock, no waiting is invovled when using a preemption lock for synchronization.
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Figure 15.15: Task-to-task resource synchronization-shared memory guarded by preemption lock.

Sharing Multiple I nstances of Resour ces Using Counting Semaphores and M utexes

Figure 15.16 depicts atypical scenario where N tasks share M instances of a single resource type, for example,
M printers. The counting semaphore tracks the number of available resource instances at any given time. The
counting semaphore isinitialized with the value M. Each task must acquire the counting semaphore before
accessing the shared resource. By acquiring the counting semaphore, the task effectively reserves an instance of
the resource. Having the counting semaphore alone isinsufficient. Typically, a control structure associated with
the resource instances is used. The control structure maintains information such as which resource instances are
in use and which are available for alocation. The control information is updated each time a resource instance
iseither alocated to or released by atask. A mutex is deployed to guarantee that each task has exclusive access
to the control structure. Therefore, after atask successfully acquires the counting semaphore, the task must
acquire the mutex before the task can either allocate or free an instance.



Figure 15.16: Sharing multiple instances of resources using counting semaphores and mutexes.
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15.7 Specific Solution Design Patterns

This section presents more complex design patterns for synchronization and communication. Multiple
synchronization primitives can be found in asingle design pattern.

15.7.1 Data Transfer with Flow Control

Task-to-task communication commonly involves data transfer. One task is a producer, and the other is a data
consumer. Data processing takes time, and the consumer task might not be able to consume the data as fast asthe
producer can produce it. The producer can potentially overflow the communication channel if a higher priority
task preempts the consumer task. Therefore, the consumer task might need to control the rate at which the
producer task generates the data. This processis accomplished through a counting semaphore, as shown in
Figure 15.17. In thismcn?;se, the counting semaphore is a permission to produce data.
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Figure 15.17: Using counting semaphores for flow contral.

The data buffer in this design pattern is different from an RTOS-supplied message queue. Typically, a message
gueue has a built-in flow control mechanism. Assume that this message buffer is a custom data transfer
mechanism that is not supplied by the RTOS.

Asshownin Figure 15.17, task #1 is the data producer, while task #2 is the consumer. Task #1 can introduce
data into the buffer aslong as the task can successfully acquire the counting semaphore. The counting semaphore
may beinitialized to a value less than the maximum allowabl e token value. Task #2 can increase the token value
with the give operation and may decrease the token value by the take operation depending on how fast the task
can consume data. Listing 15.2 shows the pseudo code for this design pattern.

Listing 15.2: Pseudo code for data transfer with flow control.

re(Counting_Semaphore) Consume data from MsgQueue
Produce data into msgQueue Give(Counting_Semaphore)

data producing task data consuming task

15.7.2 Asynchronous Data Reception from Multiple Data
Communication Channels

Commonly, a daemon task receives data from multiple input sources, which implies that data arrives on
multiple message queues. A task cannot block and wait for data on multiple message queues. Therefore, in such
cases, multiple sources may use a single semaphore to signal the arrival of data. A task cannot block and wait
on multiple semaphores either.

Thetask blocks and waits on the semaphore. Each ISR inserts data in the corresponding message queue
followed by a give operation on the semaphore.



Asshown in Figure 15.18, asingle interrupt lock is sufficient to protect against multiple interrupt sources, as
long as the masked interrupt level covers these sources. Both the interrupt service routines use asingle
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Figure 15.18: Task waiting on multiple input sources.

Listing 15.3 shows the code that the task runs when multiple input message queues are present. Note that the
semaphore used in this case is a binary semaphore.
Listing 15.3: Pseudo code for task waiting on multiple input sources.

(Get (Bi nary_Senmaphore))
di sabl e(interrupts)
for (each nsgQueue)
get nmsgQueuelLength
for (nmsgQueuelLengt h)
renmove a nmessage
enabl e(i nterrupts)
process the nessage
di sabl e(interrupts)

endf or
endf or
enabl e(i nterrupts)
end while

!me RTOS kernels do not have the event-register object. Implementing the event register using the common
basic primitives found in the mgority of the RTOS kernels can be quite useful when porting applications from
one RTOS to another.

The event-register object can be implemented using a shared variable, an interrupt lock, and a semaphore. The
shared variable stores and retrieves the events. The interrupt lock guards the shared variable because ISRs can
generate events through the event register. The semaphore blocks the task wanting to receive desired events.
Event _Recei ve(want ed_event s)
{
task_cb.wanted_events = wanted_events
Wil e (TRUE)
Cet (task_ch. event _semaphor e)
di sabl e(interrupts)
events = wanted_events XOR task_ch.recvd_events
task_cb.wanted_events = task_cb.wanted_event AND (NOT events)
enabl e(i nterrupts)
If (events is not enpty)
return (events)
endl f
EndWhi | e

}

The variable task_cb refers to the task control block, in which the kernel keepsits private, task-specific
information. Note that the unwanted events are not cleared because the task can call event_receive sometime

later.
Event _Send(events)

{

di sabl e(interrupts)



task _cb.recvd events = task cbh.recvd _events OR events
enabl e(interrupts)
G ve(task_cb. event _senaphore)

15.7.3 M ultiple Input Communication Channels

A daemon task usually has multiple data input sources and multiple event input sources, as shown in Figure
15.19. Consider a daemon task that processes data from an 1/0O device and has a periodic timer, which is used
for recovery if the device is stuck in an inconsistent state. The system timer ISR signals the periodic timer

event; this event does not carry data. In such situations, an event register combined with a counting semaphore is
amuch better dt%@%ﬂ},ﬁ% than using counting semaphores alone for signaling (see Figure 15.10).
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Figure 15.19: Task with multiple input communication channels.

With an event register, each event bit is pre-allocated to a source. In this design pattern, one event bit is
assigned to the I/O task #1 and another bit is assigned to the timer ISR. The task blocks on an event register, and
an event from either source activates the task. The 1/0 task first inserts the data associated with an I/O device
into the message queue. Then the I/O task signals this event to the task by setting the event's assigned bit in the
event register. The timer ISR sets the event bit; this event is no more than atick announcement to the task. After
the task resumes execution, it performs the appropriate action according to the event-register state.

Because the event register is only used as a Signaling mechanism, a counting semaphore is used to keep track of
the total number of tick occurrences. Listing 15.4 puts this discussion into perspective. The addition of the
counting semaphore does not increase the code complexity.

Listing 15.4: Pseudo code for using a counting semaphore for event accumulation combined with an
event-register used for event notification.

(the_events = wait for events from Event-Regi ster)
if (the_events & EVENT_TYPE_DEVI CE)
while (CGet nessage from nsgQueue)
process the nessage
endwhi | e
endi f

if (the_events & EVENT_TYPE_TI MER)
counter = 0
di sabl e(i nterrupts)
whi l e (CGet(Counting_Senmaphore))
counter = counter + 1
endwhi | e
enabl e(i nterrupts)
if (counter > 1)
recovery tine
el se
process the timer tick
endi f
endi f
endwhi | e




15.7.4 Using Condition Variablesto Synchronize between Readers
and Writers

The design pattern shown in Figure 15.20 demonstrates the use of condition variables. A condition variable can
be associated with the state of a shared resource. In this example, multiple tasks are trying to insert messages
into a shared message queue. The predicate of the condition variable is 'the message queue isfull.' Each writer
task triesfirst to insert the message into the message queue. The task waits (and is blocked) if the message
dueueis currently full. Otherwise, the message isinserted, and the task continues its execution path.

Figure 15.20: Using condition variables for task synchronization.

Note the message queue shown in Figure 15.20 is called a'simple message queue.' For the sake of this example,
the reader should assume this message queue is a simple buffer with structured content. This sSimple message
gueue is not the same type of message queue that is provided by the RTOS.

Dedicated reader (or consumer) tasks periodically remove messages from the message queue. The reader task
signals on the condition variable if the message queueisfull, in effect waking up the writer tasks that are
blocked waiting on the condition variable. Listing 15.5 shows the pseudo code for reader tasks and Listing 15.6
shows the pseudo code for writer tasks.

Listing 15.5: Pseudo code for reader tasks.

guar di ng_rmut ex)
e nessage from nessage queue
msgQueue Was Ful |)

Si gnal (Condi tion_vari abl e)
Unl ock( guardi ng nut ex)

15.6: Pseudo code for writer tasks.

guar di ng_rmut ex)

(msgQueue is Full)
it(Condition_variable)
Produce nessage into nessage queue
Unl ock( guardi ng nut ex)

S Chapter 8 discusses, the call to event_receive isablocking call. The calling task is blocked if the event
register is empty when the call is made. Remember that the event register is a synchronous signal mechanism.
The task might not run immediately when events are signaled to it, if ahigher priority task is currently executing.
Events from different sources are accumulated until the associated task resumes execution. At that point, the call
returns with a snapshot of the state of the event register. The task operates on this returned value to determine
which events have occurred.

Problematically, however, the event register cannot accumulate event occurrences of the same type before



processing begins. The task would have missed all but one timer tick event if multiple timer ticks had occurred
before the task resumed execution. Introducing a counting semaphore into the circuit can solve this problem.
Soft timers, as Chapter 11 discusses, do not have stringent deadlines. It isimportant to track how many ticks
have occurred. Thisway, the task can perform recovery actions, such as fast-forwarding time to reduce the
drift.

The data buffer in this design pattern is different from an RTOS-supplied message queue. Typically, amessage
gueue has a built-in flow control mechanism. Assume that this message buffer is acustom data transfer
mechanism that is not supplied by the RTOS.

Note that the lock call on the guarding mutex is ablocking call. Either awriter task or areader task is blocked
if it triesto lock the mutex while in the locked state. This feature guarantees serialized access to the shared
message queue. The wait operation and the signal operation are both atomic operations with respect to the
predicate and the guarding mutex, as Chapter 8 discusses.

In this example, the reader tasks create the condition for the writer tasks to proceed producing messages. The
one-way condition creation of this design impliesthat either there are more writer tasks than there are reader
tasks, or that the production of messagesis faster than the consumption of these messages.

15.7.5 Sending High Priority Data between Tasks

In many situations, the communication between tasks can carry urgent data. Urgent data must be processed in a
timely fashion and must be distinguished from normal data. This processis accomplished by using signals and
an urgent data message queue, as shown in Figure 15.21. For the sake of this example, the reader should assume

UREGENT dain

Figure 15.21: Using signals for urgent data communication.

As Chapter 8 describes, one task uses asignal to notify another of the arrival of urgent data. When the signal
arrives, the receiving task diverts from its normal execution and goes directly to the urgent data message queue.
The task processes messages from this queue ahead of messages from other queues because the urgent data
gueue has the highest priority. Thistask must install an asynchronous signal handler for the urgent datasignal in
order to receiveit. The reason the signal for urgent data notification is deploying is because the task does not
know of the arrival of urgent data unless the task is already waiting on the message queue.

The producer of the urgent data, which can be either atask or an ISR, inserts the urgent messagesinto the
predefined urgent data message queue. The source signals the recipient of the urgent data. The signal interrupts
the normal execution path of the recipient task, and the installed signal handler isinvoked. Inside thissignal
handler, urgent messages are read and processed.

In this design pattern, urgent datais maintained in a separate message queue although most RTOS-supplied

message queues support priority messages. With a separate message queue for urgent data, the receiver can
control how much urgent datait iswilling to accept and process, i.e., aflow control mechanism.

15.7.6 Implementing Reader-Writer Locks Using Condition Variables

This section presents another example of the usage of condition variables. The code shown in Listings 15.7,
15.8, and 15.9 are written in C programming language.



Consider a shared memory region that both readers and writers can access. The example reader-writer lock
design has the following properties. multiple readers can simultaneously read the memory content, but only one
writer is alowed to write datainto the shared memory at any one time. The writer can begin writing to the
shared memory when that memory region is not accessed by atask (readers or writers). Readers precede
writers because readers have priority over writersin term of accessing the shared memory region.

The implementation that follows can be adapted to other types of synchronization scenarios when prioritized
access to shared resources is desired, as shown in Listings 15.7, 15.8, and 15.9.

The following assumptions are made in the program listings:
1.

The mutex_t data type represents a mutex object and condvar_t represents a condition variable object;
both are provided by the RTOS.
2.

lock_mutex, unlock_mutex, wait_cond, signal_cond, and broadcast_cond are functions provided by the
RTOS. lock_mutex and unlock_mutex operate on the mutex object. wait_cond, signa_cond, and
broadcast_cond operate on the condition variable object.

Listing 15.7 shows the data structure needed to implement the reader-writer lock.
Listing 15.7: Data structure for implementing reader-writer locks.

ef struct {

nmut ex_t guar d_nut ex;
condvar _t read _condvar;
condvar _t write condvar;
i nt rw_count;
i nt read_waiting;
} rwlock_t;
rwcount == -1 indicates a witer is active

IStiNg 15.8 shows the code that the writer task invokes to acquire and to release the lock.
Listing 15.8: Code called by the writer task to acquire and release |ocks.

rewite(rw ock_t *rw ock)

| ock_nmut ex( & W ock- >guar d_nut ex) ;

while (rw ock->rw count != 0)
wai t _cond( & w ock->wite_condvar, & w ock->guard_mutex);
rwl ock->rw _count = -1;

unl ock_nut ex( & wl ock- >guar d_nut ex) ;

}

rel ease_wite(rw ock_t *rw ock)
{
| ock_nut ex( & W ock- >guar d_nut ex) ;
rw ock->rw count = O;
if (rw ock->r waiting)
br oadcast _cond( & w ock- >read_condvar, &rw ock->guard_nut ex);
el se
signal _cond( & W ock->write_condvar, & w ock->guard_nutex);
unl ock_nut ex( & wl ock- >guar d_nut ex) ;

}

Mg 15.9 shows the code that the reader task invokes to acquire and release the lock.
Listing 15.9: Code called by the reader task to acquire and release |ocks.

re_read(rw ock_t *rw ock)




| ock_nut ex( & w ock->guar d_nut ex) ;
rw ock->r_waiting++;
while (rw ock->rw count < 0)
wai t _cond( & W ock->read_condvar, & w ock->guard_nut ex);
rwl ock->r_waiting = O;
rw ock->rw_count ++;
unl ock_nut ex( & w ock- >guar d_rut ex) ;

}

rel ease_read(rw ock_t *rw ock)
{
| ock_nut ex( & w ock->guar d_nut ex) ;
rw ock->rw count --;
if (rw ock->rw count == 0)
si gnal _cond( & w ock->wite_condvar, &rw ock->guard_mutex);
unl ock_nut ex( & w ock- >guar d_nut ex) ;

N Case broadcast_cond does not exist, use afor loop as follows
for (i = rwock->read_waiting; i > 0; i--)
si gnal _cond( & w ock->read_condvar, & w ock->guard_nmnut ex);




15.8 Pointsto Remember

Some points to remember include the following:
Synchronization is classified into resource and activity synchronization.
Resource synchronization is closely related to critical sections and mutual exclusion.
Activity synchronization is also called condition synchronization or sequence control.
Barrier synchronization can be used to perform activity synchronization for a group of tasks.

Rendezvous synchronization is used to perform activity synchronization between two tasks.

Tasks communicate with each other to transfer data, to signal event occurrences, to alow onetask to
control other tasks, to synchronize activities, and to implement custom resource synchronization
protocols.

Interrupt locks should be used only when necessary to synchronize access to shared resources between a
task and an ISR.

Preemption locks can cause priority inversion.




Chapter 16: Common Design
Problems

16.1 Introduction

Most embedded RTOSes facilitate a multitasking- or multithreading-capabl e environment. Many challenging
design problems arise when devel oping embedded applications in multitasking systems.

The nature of this environment is that multiple threads of execution share and contend for the same set of
resources. As such, resource sharing requires careful coordination to ensure that each task can eventually
acquire the needed resource or resources to continue execution.

In a preemptive multitasking environment, resource sharing is a function of task priority. The higher the priority
of atask, the more important the task is. Higher priority tasks have precedence over lower priority tasks when
accessing shared resources. Therefore, resource sharing cannot violate this rule. On the other hand, if higher
priority tasks always take resources from lower priority tasks, this sharing schemeis not fair and can prevent
lower priority tasks from ever completing. This condition is called starvation. Maximization of resource
utilization is yet another conflicting requirement.

Two of the most common design problems facing embedded devel opers are the deadlock and the priority
inversion problem.

Specifically, this chapter focuses on:
resource classification,
resource request models,
definition of deadlocks,
deadlock detection, recovery, avoidance and prevention,

definition of priority inversion, and

solutions to priority inversion.




16.2 Resour ce Classification

In embedded systems, resources are shared among various concurrently executing tasks. Examples of these
shared resources include 1/0O devices, machine registers, and memory regions. These shared resources are
categorized as either preemptible or nonpreemptible .

A preemptible resource can be involuntarily and temporarily removed from atask without affecting the task's
execution state or result. The machine registers set that is shared among multiple tasksis an example. When
kernel scheduling preempts a current task, the content of the machine registers, including the execution state of
the current task, is saved into main memory. The registers are reinitialized to execute another task. When that
other task compl etes, the execution state is restored to the register set, and the preempted task is resumed. The
scheduler guarantees that the register set contains the execution state from a single task even though the registers
are shared among multiple tasks throughout the system's lifetime.

A non-preemptible shared resource must be voluntarily relinquished by the owning task, or unpredictable
results can occur. A shared memory region belongs to this category. For example, one task should not be
allowed to write to a shared memory region before another task completesits read or write operation.

The types of resources atask holds are important when deciding on what solutions to take when thetask is
involved in deadlock situations. Section 16.3.3 discusses the relationship between the resource types and
deadlock recovery mechanismsin detail.




16.3 Deadlocks

Deadlock is the situation in which multiple concurrent threads of execution in a system are blocked permanently
because of resource requirements that can never be satisfied.

A typica real-time system has multiple types of resources and multiple concurrent threads of execution
contending for these resources. Each thread of execution can acquire multiple resources of various types
throughout its lifetime. Potential for deadlocks exist in a system in which the underlying RTOS permits resource
sharing among multiple threads of execution. Deadlock occurs when the following four conditions are present:
Mutual exclusion-A resource can be accessed by only one task at atime, i.e., exclusive access mode.

No preemption-A non-preemptible resource cannot be forcibly removed from its holding task. A resource
becomes available only when its holder voluntarily relinquishes claim to the resource.

Hold and wait-A task holds already-acquired resources, while waiting for additional resources to become
available.

Circular wait-A circular chain of two or more tasks exists, in which each task holds one or more resources
being requested by atask next in the chain.

Given that each resource is nonpreemptible and supports only exclusive access mode, Figure 16.1 depictsa

deadlock situation between two tasks.
Figure 16.1: Deadlock situation between two tasks.

Figure 16.1 isaresource graph . An arrow labeled holds going from aresource to atask indicates that the task
currently holds (or owns) the resource. An arrow labeled wants going from atask to a resource indicates that
the task currently needs this resource to resume execution.

In this example, task #1 wants the scanner while holding the printer. Task #1 cannot proceed until both the
printer and the scanner arein its possession. Task #2 wants the printer while holding the scanner. Task #2
cannot continue until it has the printer and the scanner. Because neither task #1 nor task #2 iswilling to give up
what it already has, the two tasks are now deadlocked because neither can continue execution.

Deadlocks can involve more than two tasks.

Asshown in Figure 16.2, task T1 currently holds resource R1 (a printer), and T1 wants resource R2 (a
scanner). Task T2 holds resource R2 and wants resource R3 (a memory buffer). Similarly, task T3 holds
resource R3 and wants resource R1. It is easy to see the cycle, i.e., the circular-wait condition in this system.
Tasks T1, T2, and T3, and resources R1, R2, and R3 comprise the deadlocked set . Note that in the system in
Figure 16.2, one instance per resource type exists, i.e., there is one instance of R1, one instance of R2, and one
instance of R3. A later section, 'Multi-Instance Resource Deadlock Detection’ on page 266, discusses deadlock



situations that involve multiple instances of aresource type.
Figure 16.2: Deadlock situation among three tasks.

In this example, each task requires a single instance of a single resource type at any given time. Many situations
exist in which atask might require multiple instances of multiple types of resources. The formation of deadlocks

depends on how atask requests resources (formally known as a resour ce request model ). The deadlock
detection algorithms are constructed according to the resource request models.

16.3.1 Resour ce Request M odels

When tasks ask for resources, the way the task makes the requests can be classified into these request models:

the Single resource request model,

the AND resource request model,

the OR resource request model, and

the AND-OR resource request model.

In the Single resource request model, exemplified in both Figure 16.1 and Figure 16.2, atask can have at most
one outstanding resource request at any given time. In the request model, atask asksfor resources asin 'wants a
printer.'

In the AND resource request model, atask can have multiple simultaneous requests outstanding at any given
time. For example, atask can request resources as (R1 and R2) or (R1 and R2 and R3). A task is blocked until
all of the requested resources are granted. In this request model, atask asks for resources asin "wants both a
printer and a scanner.” The task resumes execution only when it successfully acquires both the printer and the
scanner.

In the OR resource request model, atask can request a set of resources, but the task can resume execution as
soon as any one of the resources from the request set becomes available. For example, atask can request
resources as (R1 or R2) or (R1 or R2 or R3). In thisrequest model, atask asksfor resources asin "wants
either aprinter or ascanner.” The task resumes execution when it acquires either the printer or the scanner.

In the AND-OR resource request model, atask can make resource requests in any combination of the AND and
OR models. For example, atask can request a set of resources as (R1 or R2 and (R3 or R4)). In this request
model, the task asks for resources asin "wants either a printer or a scanner, and wants either amemory buffer
or amessage queue.” The task can resume execution when it acquires both the printer and the memory buffer,
when it acquires both the printer and the message queue, when it acquires the scanner and the memory buffer, or
when it acquires the scanner and the message queue. A generalization of the AND-OR model isthe C(n,k)
model. In thismodel, atask can make n resource requests and can resume execution as soon as k resources are

granted, where kK77,



16.3.2 Deadlock Detection

A deadlock condition is called a stable deadlock when no task in the deadlocked set expects atimeout or an
abort that can eliminate the deadlock. A stable deadlock is permanent and requires external influenceto
eliminate. The external influenceis the deadlock detection and recovery by the underlying RTOS.

Deadlock detection isthe periodic deployment of an agorithm by the RTOS. The agorithm examines the
current resource allocation state and pending resource requests to determine whether deadlock existsin the
system, and if so, which tasks and resources are involved.

The deadlock detection algorithm that the RTOS deploysisaglobal agorithm becauseiit is used to detect
deadlocksin the entire system. In general, each task of the deadlocked set is not aware of the deadlock
condition. As aresult, the recovery algorithm is more intrusive on the normal execution of the tasks belonging to
the deadlocked set. The recovery agorithms and reasons why these algorithms are intrusive on the execution of
the tasks involved in the deadlock are discussed shortly.

A temporal deadlock isatemporary deadlock situation in which one or more tasks of the deadlocked set either
times out or aborts abnormally due to timing constraints. When the task times out or aborts, it frees the resources
that might have caused the deadlock in the first place, thus eliminating the deadlock. Thisform of detection and
recovery islocalized to an individual task, and the task has deadlock awareness.

A system that is capable of deadlock detection is more efficient in terms of resource utilization when compared
to a system without deadlock detection. A system capable of deadlock detection is not conservative when
granting resource allocation requests if deadlock is allowed to occur. Therefore, resources are highly utilized.
A system without deadlock detection is conservative when granting resource allocation requests. A resource
request is denied if the system believesthereis a potential for deadlock, which may never occur. The
conservatism of the system resultsin idle resources even when these resources could be used.

Deadlock detection does not solve the problem; instead, the detection algorithm informs the recovery agorithm
when the existence of deadlock is discovered.

For deadlock in the Single resource request model, a cycle in the resource graph is a necessary and sufficient
condition.

For deadlock in the AND resource request model, a cyclein the resource graph is a necessary and sufficient
condition. It is possible for atask to be involved in multiple deadlocked sets.

For deadlock in the OR request model, aknot is a necessary and sufficient condition.

Therefore, deadlock detection involves finding the presence of a cycle in the resource graph for both the Single
and the AND resource request models. Deadlock detection involves finding the presence of aknot in the
resource graph for the OR resource request model.

For deadlock in the AND-OR model, no ssimple way exists of describing it. Generally, the presence of a knot
after applying the algorithm to the OR model first and then subsequently applying the algorithm to the AND
model and finding a cycleisan indication that deadlock is present.

The following sections present two deadlock detection agorithms-one for the single resource request model
and one for the AND resource request model-to illustrate deadlock detection in practice.

For node Ain the resource graph, the reachable set of Aisthe set of all nodes B, such that a directed path exists
from Ato B. A knot isthe request set K, such that the reachable set of each node of K isexactly K.

Single-1nstance Resour ce Deadlock Detection



The deadlock detection algorithm for systems with a single instance of each resource type, and tasks making
resource reguests following the single resource request model, is based on the graph theory. Theideaisto find
cyclesin the resource alocation graph, which represents the circular-wait condition, indicating the existence of
deadl ocks.

Figure 16.3 shows the resource alocation graph. The graph represents the following:

acircle represents aresource,

asquare represents atask or thread of execution,

an arrow going from atask to aresource indicates that the task wants the resource, and

an arrow going from aresource to atask indicates that the task currently holds the resource.
T2

wants
O il

Figure 16.3: Current state of resource allocations and requests.

In the following discussions, node refers either to the circle (resource) or the square (task) in Figure 16.3. Arc
refersto the arrow. The deadlock detection algorithm can be stated in these seven steps.
1.

Makealist of al the nodes, N, from the graph.

Pick anode from N. Create another list, L, initially empty, which is used for the graph traversal.

Insert the nodeinto L and check if thisnode aready existsin L. If so, acycle exists; therefore, a deadlock
is detected, and the a gorithm terminates. Otherwise, remove the node from N.

Check whether any un-traversed outgoing arcs from this node exist. If all of the arcs are traversed, go to
step 6.

Choose an un-traversed outgoing arc originating from the node and mark the arc as traversed. Follow the
chosen arc to the new node and return to step 3.

At this stage, a path in the graph terminates, and no deadlocks exist. If more than one entry isin L, remove
thelast entry from L. If more than one entry remainsin L, make the last entry of L the current node and go
to step 4.

If thelist N isnot empty, go to step 2. Otherwise, the algorithm terminates, and no deadlocks exist in the



system.
The actual implementation from step 3 to step 6 trandates into a depth first search of the directed graph.
Applying this algorithm to the system depicted in Figure 16.3 provides the following:
Step1: N={ R1,T1,R2,T2,R3, T3, R4, T4, T5,R5, T6 }
Step 2: L ={ <empty>}; pick node R1
Step3: L={ R1};nocyclesareinL; N={ T1,R2, T2,R3, T3, R4, T4, T5, R5, T6 }
Step 4: R1 has one outgoing arc
Step 5: Mark the arc; reaches node T1; go back to step 3
Step3: L={ R1, T1}; N={ R2, T2,R3, T3, R4, T4, T5,R5, T6 }; no cyclesarein L
The agorithm continues from step 3 to step 5 and reiterates until it reaches node T3, in which thelist L ={ R1,
T1,R2, T2,R4, T3} andthelist N={ R3, T4, T5, R5, T6 }. Two outgoing arcs are at node T3. When the
downward arcispicked, L={ R1, T1, R2, T2, R4, T3, R5 }. Two outgoing arcs are at node R5. When the
rightward arcispicked, L={ R1, T1,R2, T2, R4, T3, R5, T6 }.
Step 4: T6 does not have any outgoing arcs; continue to step 6
Step 6: Remove T6fromthelistL; L={ R1, T1, R2, T2, R4, T3, R5}; returnto step 4
Step 4: Pick the unmarked leftward arc at R5
Step 5: Mark the arc; reaches node T5; return to step 3
Step3: L={ R1,T1,R2,T2,R4, T3,R5, T5}; N={ R3,T4}; nocyclesarein L
Step 4: Pick theonly outgoing arc at T5
Step 5: Mark the arc; reaches node R3; go back to step 3
Step3: L={ R1,T1,R2, T2, R4, T3,R5, T5, R3}; N={ T4}; still no cyclesarein L
Step 4: Pick the only outgoing arc at R3

Step 5: Mark the arc; reaches node T1; go back to step 3

Step3: L={ R1, T1,R2,T2,R4, T3, R5, T5,R3, T1}; Node T1 aready existsin L. A cycleisfoundin the
graph, and adeadlock exists. The algorithm terminates.

The deadlock set is comprised of the entire nodes enclosed by the two occurrences of node T1 inclusively.
Therefore, the discovered deadlock set is{T1, R2, T2, R4, T3, R5, T5, R3}. One thing worth noting is that the
algorithm detects deadlocks if any exist. Which deadlock is detected first depends on the structure of the graph.
Closer examination of the resource graph reveals that another deadlock exists. That deadlock setis{R2, T2,
R4, T3}. At node T3 if the upward arc is chosen first instead of the downward arc, this later deadlock
occurrence would be discovered, and the algorithm would terminate much sooner.

Multi-l nstance Resour ce Deadlock Detection

The deadlock detection agorithm takes a different approach for systems with multiple instances of each
resource type, and tasks make resource requests following the AND model. An underlying assumptionisthat a



resource allocation system is present. The resource allocation system is comprised of a set of different types of
resources, R1, R2, R3, , Rn. Each type of resource has afixed number of units. The resource allocation system
maintains a resource allocation table and a resource demand table.

Each row of tables C and D represents atask T. Each column of tables C and D is associated with aresource
type. C isthe resource allocation table representing resources already allocated. D is the resource demand table
representing additional resources required by the tasks.

N =Tota |[N1 N2 N3 Nk
System
Resources
Table
where Ni isthe number of units of resource type Ri for all i where{ 1 ?i ? k}.
A= Al A2 A3 Ak
Available
System
Resources
Table
where Ai the number of units remaining for resource type Ri available for alocation.
C= Cl1 C12 C13 Cilk
Tasks
Resources
Assigned
Table
c21 Cc22 C2k
Cml Cmk
D= D11 D12 D13 D1k
Tasks
Resources
Demand
Table
D21 D22 D2k
Dml Dmk

For exampleintable C, there are C11 units of resource R1, C12 units of resource R2, and so on, which are
alocated to task T1. Similarly, there are C21 units of resource R1, C22 units of resource R2, and so on, which
are allocated to task T2. For examplein table D, task T1 demands additional D11 units of resource R1,
additional D12 units of resource R2, and so on, in order to complete execution.

The deadlock detection agorithm is asfollows:
1.



Find arow i intable D, where Dij <Aj for all 1 7% 7. If no such row exigts, the system is deadlocked,
and the algorithm terminates.
2.

Mark the row i as complete and assign Aj = Aj + Dij for all 1774 7.
3.

If an incomplete row is present, return to step 1. Otherwise, no deadlock isin the system, and the
algorithm terminates.

Step 1 of the algorithm looks for atask whaose resource requirements can be satisfied. If such atask exists, the
task can run to completion. Resources from the completed task are freed back into the resource pool, which step
2 does. The newly available resources can be used to meet the requirements of other tasks, which alow them to
resume execution and run to completion.

When the algorithm terminates, the system is deadlocked if table T hasincomplete rows. The incomplete rows
represent the tasks belonging to the deadlocked set. The algorithm isillustrated in the following example.

N= 4 6 2

A= 1 2 0

C= 0 2 0 Task 1
1 1 0 Task 2
1 1 1 Task 3
1 0 1 Task 4

D= 2 2 2 Task 1
1 1 0 Task 2
0 1 0 Task 3
1 1 1 Task 4

Step 1: Task 1 cannot continue because the available resources do not satisfy its requirements.

Task 2 can continue because what it needs can be met.

Step 2: A=2 3 0
Step 3: Task 1, task 3, and task 4 remain. Return to step 1.

Step 1: Task 1 till cannot continue. The requirement from task 3 can be met.

Step 2: A=3 4 1

Step 3: Task 1 and task 4 remain. Return to step 1.



Step 1: Task 1 till cannot continue, but task 4 can.

Step 2: A=4 4 2
Step 3: Task 1 remains. Return to step 1.

Step 1: Task 1 can continue.

Step 2: A=4 6 2

Step 3: No more tasks remain, and the algorithm terminates. No deadlock isin the system.

Now if the resource requirement for task 3were[ 01 1] instead of [ 0 1 0], task 1, task 3, and task 4 cannot
resume execution due to lack of resources. In this case, these three tasks are deadl ocked.

It isworth noting that executing a deadlock detection algorithm takes time and can be non-deterministic.

16.3.3 Deadlock Recovery

After deadlock is detected, the next step isto recover from it and find ways to break the deadlock. No one
magic solution exists to recover from deadlocks. Sometimes it is necessary to execute multiple recovery
methods before resolving a deadlock, asillustrated | ater.

For preemptible resources, resource preemption is one way to recover from a deadlock. The deadlocked set is
transferred to the recovery agorithm after the detection algorithm has constructed the set. The recovery
algorithm can then exercise preemption by taking resources away from atask and giving these resources to
another task. This process temporarily breaks the deadlock. The latter task can complete execution and free its
resources. These resources are used in turn to satisfy the first task for its completion. Resource preemption on
preemptible resources does not directly affect the task's execution state or result, but resource preemption can
affect atask's timing constraints. The duration of resource preemption can cause the preempted task to abort,
which resultsin an incomplete execution and indirectly affects the result of atask.

For non-preemptible resources, resource preemption can be detrimental to the preempted task and can possibly
affect the results of other tasks as well. For example, consider the situation in which one task isin the midst of
writing datainto a shared memory region, while at the same time a second task requests read access from the
same memory region. The write operation isinvalidated, when another task causes a deadlock, and the system
recovers from the deadlock by preempting the resource from the writing task. When the second task getsthe
resource and begins accessing the shared memory, the data read is incoherent and inconsistent. For this reason,
ashared memory region is classified as a non-preemptible resource. The preempted task writes the remaining
data when the access to the shared memory is returned. The datais no longer useful, and the write operation is
wasted effort. Sometimes this type of resource preemption is as good as eliminating the preempted task from the
system altogether.

On the other hand, the effects of non-preemptible resource preemption can be minimized if atask has abuilt-in,
self-recovery mechanism. A task can achieve self-recovery by defining checkpoints along its execution path. As
soon as the task reaches a checkpoint, the task changes a global state to reflect thistransition. In addition, the
task must define a specific entry point to be invoked by the deadlock recovery agorithm after thetask is
allowed to resume execution. The entry point is nothing more than the beginning of the task’s built-in,
self-recovery routine. In general, the recovery involves rolling back and restarting execution from the beginning
of the previous checkpoint. The concept isillustrated in Listing 16.1.

Listing 16.1: Checkpoints and recovery routine.

> recovery_entry()

{

switch (state)



/* reached checkpoint #1 */ case CHECKPO NT_1:

state = CHECKPO NT_1; recovery_met hod_1();

- br eak;

<code> case CHECKPO NT_2:
recovery_met hod_2();

/* reached checkpoint #2 */ br eak;
state = CHECKPO NT_2; -
}
1

Mi ng 16.1, aresource preemption is performed on awriter task and the preempted resource is given to the
reader task. The writer task's self-recovery involves returning to the previous checkpoint and perhaps repeating
the write operation, followed by a broadcast notification to all other tasks that the shared memory region has
just been updated. This process can reduce the impact on other tasks.

The reassignment target of the preempted resource plays an important role in breaking the deadlock. For
example, assume the deadlocked set { T1, R2, T2, R4, T3, R5, T5, R3} has been discovered, as shown in Figure
16.3. In addition, suppose resource R2 is preempted from T2 asthe first recovery step. Figure 16.4 shows the

wants
ﬂ

resource graph if R2 were reassigned to T3.
Figure 16.4: Resource preemption with a new deadlock.

The problem is not solved because a new deadlock is formed by this resource assignment. Instead, if R2 were
T

given to T1 first, the deadlock is broken as shown in Figure 16.5.
Figure 16.5: Deadlock eliminated by proper resource reassignment.

Consequently, T1 can complete and then frees R1, R2, and R3. This processin term enables T5 to complete and
releases R5. Now, both R2 and R5 are available to T2, which allowsit to run to completion. Finally, T2 is
given a second chance to execute, and the deadlock is eliminated by proper resource reassignment.

16.3.4 Deadlock Avoidance

Deadlock avoidance is an agorithm that the resource allocation system deploys. The agorithm predicts
whether the current allocation request, if granted, can eventually lead to deadlock in the future.

Deadlock avoidanceis similar to the deadlock detection algorithm outlined in the ‘M ulti-Instance Resource
Deadlock Detection' on page 266. Each time aresource request is made, the system tests whether granting such
arequest might alow the remaining resources to be given to different tasks in subsequent allocations so that all
tasks can run to completion. Revisiting the example given in 'Multi-Instance Resource Deadlock Detection’
provides the following:



N= 4 6 2

A= 1 2 0

C= 0 2 0 Task 1
1 1 0 Task 2
1 1 1 Task 3
1 0 1 Task 4

D= 2 2 2 Task 1
1 1 0 Task 2
0 1 0 Task 3
1 1 1 Task 4

If task 2 requests one unit of resource R1, granting such arequest does not lead to deadlock because a sequence
of resource allocations exists, i.e., giving the remaining resources to task 2, to task 3, followed by allocation to
task 4, and finally to task 1, which allows all tasksto complete. Thisrequest from task 2 is safe and is alowed.
If task 4 were to make the same request for R1 and if such arequest were granted, this process would prevent
task 2 from completing, which would result in a deadlock such that no task could resume execution. The request
from task 4 is an unsafe request, and the deadlock avoidance algorithm would reject the request and put task 4
on hold while alowing other tasks to continue.

In order for deadlock avoidance to work, each task must estimate in advance its maximum resource requirement
per resource type. This estimation is often difficult to predict in adynamic system. For more static embedded
systems or for systems with predictable operating environments, however, deadlock avoidance can be
achieved. The estimations from all tasks are used to construct the demand table, D. This resource estimation
only identifies the potential maximum resource requirement through certain execution paths. In the mgjority of
cases, there would be overestimation. Overestimation by each task can lead to inefficient resource utilization in
aheavily loaded system. This problem is caused because the system might be running with most of the
resources in use, and the algorithm might predict more requests as being unsafe. Thisissue could result in many
tasks being blocked, while holding resources that were aready allocated to them.

16.3.5 Deadlock Prevention

Deadlock prevention is aset of constraints and requirements constructed into a system so that resource requests
that might lead to deadlocks are not made. Deadlock prevention differs from deadlock avoidance in that no
run-time validation of resource allocation requests occurs. Deadlock prevention focuses on structuring a system
to ensure that one or more of the four conditions for deadlock i.e., mutua exclusion, no preemption,
hold-and-wait, and circular wait is not satisfied.

This set of constraints and requirements placed on resource allocation requestsis as follows:

Eliminating the hold-and-wait deadlock condition. A task requests at one time all resources that it will
need. The task can begin execution only when every resource from the request set is granted.



This requirement addresses the hold-and-wait condition for deadlock. A task that obtains all required
resources before execution avoids the need to wait for anything during execution. This approach,
however, has limited practicality and several drawbacks. In adynamic system, tasks have difficulty
predicting in advance what resources will be required. Even if all possible resource regquirements could
be accurately predicted, this prediction does not guarantee that every resource in this predicted set would
be used. Execution paths, which external factors affect, determine which resources are used.

One major drawbacks to this approach is the implicit requirement that all resources must be freed at the
sametime. Thisrequirement isimportant because a resource can be needed in multiple code paths; it can
be used and later be reused. So, the resource must be kept until the end of task execution. Some of the
resources, however, might be used once or used only briefly. It isinefficient for these resources to be
kept for along time because they cannot be reassigned to other tasks.

Eliminating the no-preemption deadlock condition. A task must release already acquired resources if a
new request is denied. The task must then initiate a new request including both the new resource and all
previously held resources.

This requirement addresses the no-preemption condition for deadlock. This approach is dightly more
dynamic than the previous method in that resources are acquired on an as-needed basis and only those
resources needed for a particular execution path, instead of all possible resources, are acquired.

This approach, however, is not much better than the previous one. For tasks holding non-preemptible
resources, this requirement means that each task must restart execution either from the beginning or from
well-defined checkpoints. This process nullifies partially complete work. Potentially, atask might never
complete, depending on the average number of tasks existing in the system at a given time and depending
on the overall system scheduling behavior.

Eliminating the cir cular-wait deadlock condition. An ordering on the resources must be imposed so that
if atask currently holds resource Ri, a subsequent request must be for resource Rj where j > i. The next
request must be for resource Rk where k > j, and so on.

Thisimposition addresses the circular-wait condition for deadlock. Resources are organized into a
hierarchical structure. A task is allowed to acquire additional resources while holding other resources,
but these new resources must be higher in the hierarchy than any currently held resources.




16.4 Priority Inversion

Priority inversion isasituation in which alow-priority task executes while a higher priority task waits on it
due to resource contentions.

A high task priority implies amore stringent deadline. In a priority-based, preemptive scheduling system, the
kernel schedules higher priority tasks first and postpones lower priority tasks until either all of the higher
priority tasks are completed or the higher priority tasks voluntarily relinquish the CPU. In real-time embedded
systems, the kernel strives to make the schedulability of the highest priority task deterministic. To do this, the
kernel must preempt the currently running task and switch the context to run the higher priority task that has just
become eligible, all within aknown timeinterval. This system scheduling behavior is the norm when these
tasks are independent of each other. Task interdependency is inevitable when tasks share resources and
synchronizing activities. Priority inversion occurs when task interdependency exists among tasks with different
priorities.

Consider the situation shown in Figure 16.6, in which a higher priority task shares aresource with alower
priority task. The higher priority task must wait when the lower prioritugsmngs locked the resource, even
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Figure 16.6: Priority inversion example.

Asshown in Figure 16.6, at timet1 the low-priority task (L P-task) locks the shared resource. The L P-task
continues until time t2 when the high-priority task (HP-task) becomes eligible to run. The scheduler

immediately preempts the LP-task and context-switches to the HP-task. The HP-task runs until time t3 when it
requires the shared resource. Because the resource isin the locked state, the HP-task must block and wait for its
release. At this point, the scheduler context-switches back to the L P-task. Priority inversion begins at timet3. At
time t4, the L P-task releases the shared resource, which triggers preemption and allows the HP-task to resume
execution. Priority inversion ends at time t4. The HP-task completes at time t5, which allows the L P-task to
resume execution and finally complete at time t6.

The priority inversion shown in Figure 16.6 is a bounded priority inversion. The duration of the low-priority
task’s holding time on the shared resource is known. It is possible for a medium-priority task to preempt the
low-priority task for an undetermined amount of time, which would cause the high-priority task to wait
indefinitely. This priority inversion scenario is called unbounded priority inversion and is shownin Figure
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Figure 16.7: Unbounded priority inversion example.

Asin the previous example, priority inversion takes place at time t3. The low-priority task (L P-task) executes
until time t4 when an unrelated medium-priority task (MP-task) preemptsit. Because the MP-task does not share
resources with either the HP-task or the L P-task, the MP-task continues execution until it completes at time ts.



The duration between t4 and t5 is unknown because the duration depends on the nature of the MP-task. In
addition, any number of unrelated medium-priority tasks can execute during this period. These unknown factors
affect the interval and trandate into unbounded priority inversion.

When priority inversion occurs, the execution times for some tasks are reduced, while others are elongated. In
Figure 16.7, consider the case in which the high-priority task (HP-task) takes the guarding semaphore before the
low-priority task (L P-task). The medium-priority task (MP-task) must wait until the HP-task compl etes.
However, when the MP-task executesfirst, it is preempted by the HP-task. Again, the MP-task resumes
execution after the HP-task completes. In both cases, the overall execution times for the MP-task are longer than
the execution time to complete the MP-task during the priority inversion. Although some tasks are compl eted
early, other tasks, such as the HP-task, might misstheir deadlines. Thisissueis called timing anomaly
introduced by priority inversion.

Priority inversion results from resource synchronization among tasks of differing priorities. Priority inversion
cannot be avoided, but it can be minimized using resource access control protocols.

A resource access control protocol isa set of rules that defines the conditions under which aresource can be
granted to arequesting task and governs the execution scheduling property of the task holding the resource.

Access control protocols are discussed in the following sections. These access control protocols eliminate the
unbound priority inversion, and two of these protocols reduce the inversion time.

16.4.1 Priority Inheritance Protocol

The Priority Inheritance Protocol is aresource access control protocol that raises the priority of atask, if that
task holds a resource being requested by a higher priority task, to the same priority level asthe higher priority
task. This access control protocol followstherulesin Table 16.1 when atask T requests aresource R.

Table 16.1: Priority Inheritance Protocol rules.

Rule# Description

1 If Risinuse, T isblocked.
2 If Risfree, Risalocatedto T.
3 When atask of a higher priority requests the same resource, T's execution priority israised to the

reguesting task's priority level.

4 The task returnsto its previous priority when it releases R.
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This access control protocol is shown in Figure 16.8. Time
Figure 16.8: Priority inheritance protocol example.

With the priority inheritance protocol, when the L P-task blocks the HP-task at time t3, the execution priority is
raised to that of the HP-task. This process ensures that unrelated medium-priority tasks cannot interfere while
the LP-task executes, which resultsin the elimination of the unbounded priority inversion. When the L P-task
releases control of the shared resource, the priority isimmediately lowered to its previous level, which allows
the HP-task to preempt its execution. This action ends the priority inversion at time t4. The HP-task continues



its execution, however, even when it rel eases the resource at t5. Thisisthe nature of the priority-based,
preemptive scheduling scheme. The HP-task runs because it has the highest priority in the system.

The priority inheritance protocol is dynamic because atask does not have its priority raised until a
higher-priority task makes aregquest on the shared resource. An unrelated higher-priority task can still preempt
the task, which is the nature of the priority-based, preemptive scheduling scheme. The priority promation for a
task during priority inversion is transitive, which means the priority of a promoted task continuesto rise even if
higher-priority tasks make requests on the.mﬁm shared resource while priority inversion istaking place, as
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Figure 16.9: Trangitive priority promotion example.

In this example, three tasks with differing priorities share aresource. The LP-task acquires the resource first at
timetl. At timet2, the MP-task preempts the L P-task and executes until t3 when it needs the resource. The
MP-task is blocked. At that point, the L P-task inherits the priority from the M P-task and resumes execution at
that level. The HP-task preempts the LP-task when it readies at t4. The HP-task is blocked at t5 when it also
needs access to the shared resource. Once more, the LP-task inheritsits priority from HP-task and resumes
execution at the highest level. As soon as the LP-task completes at time t6, its priority isimmediately lowered
to the leve originally assigned.

In this example, the MP-task can hold some additional resource required by the HP-task. The HP-task can also
acquire some other resources needed by the MP-task before the HP-task blocks. When the L P-task releases the
resource and the HP-task immediately gets to run, it is deadlocked with the MP-task. Therefore, priority
inheritance protocol does not eliminate deadlock.

16.4.2 Ceiling Priority Protocol

In the celling priority protocol, the priority of every task is known, as are the resources required by every task.
For agiven resource, the priority ceiling isthe highest priority of al possible tasks that might require the
resource.

For example, if aresource R isrequired by four tasks (T1 of priority 4, T2 of priority 9, T3 of priority 10, and
T4 of priority 8), the priority ceiling of R is 10, which isthe highest priority of the four tasks.

This access control protocol followstherulesin Table 16.2 when atask T requests aresource R.
Table 16.2: Celling priority protocol rules.

Rule# |Description

1 If Risinuse, T is blocked.

2 If Risfree, Risallocated to T. T's execution priority israised to the priority ceiling of R if that is
higher. At any given time, T's execution priority equals the highest priority ceiling of all its held
resources.

3 T'spriority is assigned the next-highest priority ceiling of another resource when the resource with

the highest priority ceiling is released.

4 The task returnsto its assigned priority after it has released all resources.
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This access control protocol is shown in Figure 16.10. Prtask

Figure 16.10: Ceiling priority protocol example.

With the ceiling priority protocol, the task inherits the priority ceiling of the resource as soon as the task
acquires the resource even when no other higher priority tasks contend for the same resource. Thisruleimplies
that all critical sections from every sharing task have the same criticality level. The ideaisto finish the critical
section as soon as possible to avoid possible conflicts.

16.4.3 Priority Celling Protocol

Similarly to the ceiling priority protocol, the priority of every task is known in the priority ceiling protocol. The
resources that every task requires are also known before execution. The current priority ceiling for arunning
system at any timeisthe highest priority ceiling of all resourcesin use at that time.

For example, if four resources arein use and if R1 has apriority ceiling of 4, R2 has a priority ceiling of 9, R3
of apriority ceilling 10, and R4 of a priority ceiling 8, the current priority ceiling of the system is 10. Note that
different tasks can hold these resources.

This access control protocol followstherulesin Table 16.3 when atask T requests aresource R.
Table 16.3: Priority ceiling protocol rules.

Rule# |Description

1 If Risinuse, T is blocked.
2 If Risfreeand if the priority of T ishigher than the current priority ceiling, Risalocated to T.
3 If the current priority ceiling belongs to one of the resourcesthat T currently holds, R is allocated to

T, and otherwise T is blocked

4 The task that blocks T inherits T's priority if it is higher and executes at this priority until it releases
every resource whose priority ceiling is higher than or equal to T's priority. The task then returnsto
Its previous priority.

In the priority ceiling protocol, a requesting task can be blocked for one of three causes. The first cause is when
the resource is current in use, which is direct resource contention blocking, and isthe result of rule #1. The
second cause is when the blocking task has inherited a higher priority and its current execution priority is higher
than that of the requesting task. This causeis priority inheritance blocking and isthe result of rule #4. A task
can be blocked when its priority islower than the current priority ceiling even when the requested resourceis
free. Thiscauseis priority ceiling blocking and is a direct consequence of the 'otherwise' clause of rule #3.
Rule #3 prevents a task from blocking itself if it holds a resource that has defined the current priority ceiling.

One of the deadlock prevention strategiesin the 'Deadlock Prevention' on page 272, section 16.3.5, isto impose
ordering on the resources. The resource ordering can be realized by using the priority ceilings of the resources.
Rule #2 saysif the priority of T is higher than the current priority ceiling, T does not require any resources that
arein use. Thisissue occurs because otherwise the current priority ceiling would be either equal to or higher




than the priority of T, which implies that tasks with a priority higher than T's do not require the resources
currently in use. Conseguently, none of the tasks that are holding resources in use can inherit a higher priority,
preempt task T, and then request aresource that T holds. This feature prevents the circular-wait condition. This
feature is aso why deadlock cannot occur when using the priority ceiling protocol as an access control
protocol. The same induction process shows that the condition in which atask blocks another task but isin turn
blocked by athird task, transitive blocking, does not occur under the priority ceiling protocol.

The priority ceiling protocol has these characteristics:

A requesting task can be blocked by only one task; therefore, the blocking interval is at most the duration
of one critical section.

Transitive blocking never occurs under the priority ceiling protocol.

Deadlock never occurs under the priority celling protocol.




16.5 Pointsto Remember

Some points to remember include the following:

Resources can be classified as either preemptible or non-preemptible resources.

Deadlock occurs when all four of these conditions are true: mutual exclusion, no preemption,
hold-and-wait, and circular wait.

Resource requests can be classified into Single, AND, OR, and AND-OR request models.

Strategies exist for dealing with deadlocks. deadlock detection and recovery, deadlock avoidance, and
deadlock prevention.

Access control protocols exist for dealing with priority inversion: priority inheritance protocol, ceiling
priority protocol, and priority ceiling protocol.

Deadlock never occurs under the priority celling protocol.
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interlocked, one-way data communication. Listing 7.3: Pseudo code for interlocked, two-way data
communication. Listing 7.4: Pseudo code for broadcasting messages.

Chapter 8: Other Kernel Objects

Listing 8.1: Pseudo code for wait and the signal operations.

Chapter 9: Other RTOS Services

Listing 9.1: The sys comp.h inclusion header file. Listing 9.2: The net_conf.h configuration file. Listing 9.3:
The net_conf.c configuration file.

Chapter 12: 1/O Subsystem




Listing 12.1: C structure defining the uniform 1/0O API set. Listing 12.2: Mapping uniform I/O API to specific
driver functions.

Chapter 13: Memory Management

Listing 13.1: Pseudo code for memory allocation. Listing 13.2: Pseudo code for memory deallocation.

Chapter 15: Synchronization And Communication

Listing 15.1: Pseudo code for barrier synchronization. Listing 15.2: Pseudo code for data transfer with flow
control. Listing 15.3: Pseudo code for task waiting on multiple input sources. Listing 15.4: Pseudo code for
using a counting semaphore for event accumulation combined with an event-register used for event notification.
Listing 15.5: Pseudo code for reader tasks. Listing 15.6: Pseudo code for writer tasks. Listing 15.7: Data
structure for implementing reader-writer locks. Listing 15.8: Code called by the writer task to acquire and
release locks. Listing 15.9: Code called by the reader task to acquire and release locks.

Chapter 16: Common Design Problems

Listing 16.1: Checkpoints and recovery routine.
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